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Temporal Difference Approach in Linearly Solvable Markov Decision Processes
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The Reinforcement 1earnihg (RL) approach to Machine Learning is a technique
to learn how te make decisions iﬁ order to achieve a desired goal. The model
does not include the presence of a supervisor. The agent must learn by trial
and error. This is done by taking‘actioﬁs and observing their consequences
in the form of a reward .(or coet)’signal. Such problems are usually formalized
as a Markov decision process (MDP), The mathematical framework of MDPs relies
on the Bellman equation and is very general, but finding solutions can be

inefficient because of the explosion of possible future states.

. The framework of linearly solvable Markov decision processes (LMDP) greatly

simplifies reinforcement learning. By attending specific conditions the
Bellman equation can be made linear, and it becomes possible to obtain
solutions more efficiently. However, it is necessafy to previously know the
passive dynamics of the system (i.e, the behavior of the system in the absence
of ‘controls) which is crdcial in fhe medel, but unknown in general. P
A method toAcalculate such passive dynamics distribution (by performing
continuous embedding of knowh~traditiona1 MDPs) exists, but requires the
previous knowledge of all transition distributions and all immediate costs.
Those are usually not known beforehand in temporal difference methods. Such
methods require the agent to explore the environment and learn by
trial—and- “error.

Here we propose a method to estimate the passive dynamics and state costs
of a given system. As a conseguence, such system can then be modeled as an

LMDP. The method can also be combined with a temporal difference algorithm



of the IMDP framework (called Z learning). This enables the direct
application of 7 learning withoﬁt‘the need for explicit knowledge of passive
dynamics nor state costs beforehand. The only required knowledge about the‘
passive dynamics distribution df the system is which states can and which

cannot be visited starting from each state. And the only remaining limitation

for the direct application to real problems (with symbolic actions) is the

assumption that the agent can impose any desired transition distribution it
wants. Such assumption is an important premise of the LMDPs framework.

During the application of the method, new constraints regarding the passive
dynamics and state costs are successively incorporated in the model from
observed information of immediate costs. The resulting algorithm properly
eétimates the desirability and optimal cost-to—go functions, as well as the

passive dynamics and state costs, when solving the resulting constrained

optimization problem. The convergence speed of the new algorithm is not

significantly affected when compared,to pure Z learning. This represents an
important step for direct application of the ffamework of LMDPs framework

in a real temporal difference approach.
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