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SIZE CONTROL IN PLANTS

1. Genetic dissection of cell-size control in plants.
2. Molecular characterisation of the link between cell
size and ploidy.

3. Genetic dissection of organ-size control in plants.



How do plants control cell/organ size?

genetic cues, environmental cues

| | |

vacuolation endocycle mitotic cycle

| l

production of
water uptake macromolecules

| |

cell expansion cell growth cell proliferation
l |
1 l
checkpoint
cell size cell number
| ]
!

organ size



Cell size is correlated with ploidy.

I

Diploid (2C) Tetraploid (4C)

Yield has depended on polyploidisation events.

Examples: wheat, sugar beet, potato, coffee, banana, cotton, alfalfa



Cell size is correlated with ploidy.

Col diploid Col tetraploid

but not necessarily with organ size...



Cells increase ploidy levels through endoreduplication.

mitotic cell cycle endocycle

G2 G
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Ploidy level: 2C, 4C Ploidy level: 2C, 4C, 8C, ..., >32C



Many cell types endoreduplicate in Arabidopsis.
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Many cell types endoreduplicate in Arabidopsis.
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Arabidopsis leaf cells endoreduplicate up to 16C.

Melaragno (Plant Cell 1993)



Arabidopsis

leaf epidermis



Arabidopsis root cells endoreduplicate up to 16C.

cell expansion /

— cell differentiation

— cell proliferation

Arabidopsis root cells



Cell size is correlated with ploidy.

Arabidopsis hypocotyl cells



Cell size is correlated with ploidy.

dark

20 4C a8c 16C  3j2C

light

2C 4C 8C 16C 32C

Arabidopsis hypocotyl cells



Cell size is correlated with ploidy.

- Moth wing epithelium -




Cell size is correlated with ploidy.

- Drosophila salivary glands -




Cell size is correlated with ploidy.

- Mouse trophoblast giant cell (TGC) in placenta development-

Trophoblast Committed TGC Differentiated
Stem Cell Progenitors TGC Cells
Proliferation Differentiation/Endoreduplication

SENP2




application potential: endoreduplication in plants

B endosperm development (e.g. maize) B fruit development (e.g. tomato)

(Tanksley 2004)

B symbiosis (e.g. medicago)
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General questions

B How do cells switch from the mitotic cell cycle to the
endocycle?

B How do genetic and environmental cues influence the
endocycle transition?

B Does endocycling utilise the same cell cycle machinery as
the mitotic cycle?

B How does an increase in ploidy through endoreduplication
link with cell differentiation/cell expansion?



How do plants control cell/organ size?

genetic cues, environmental cues
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Our genetic approach: size mutants in Arabidopsis

1. hyp6,7/rhl1-3/bin3-5

--- Christian Breuer, Nicola Stacey

2. high ploidy 1-4 (hpy1-4)

--- Takashi Ishida, Sumire Fujiwara

3. full-length cDNA over-expression (FOX) lines

--- Christian Breuer, Ayako Kawamura



hyp/rhl/bin display similar dwarf phenotypes.

hypocotyl 6 (hyp6) root hairless 1 (rhl1)
hypocotyl 7 (hyp?7) root hairless 2 (rhi2)
root hairless 3 (rhi3)

brassinosteroid insensitive 3 (bin3)
brassinosteroid insensitive 4 (bin4)

In collaboration with Herman Hofte, Joanne Chory brassinosteroid insensitive 5 (bln5)
(Curr Bio 2002, PNAS 2005, Plant Cell 2007)



hyp/rhl/bin have reduced cell size phenotypes.




hyp/rhl/bin are defective in endoreduplication.

bin4
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hyp/rhl/bin are defective in endoreduplication.

WT hyp6

Ploidy level < 32C Ploidy level < 8C

DAPI-stained nuclei in trichomes



HYP/RHL/BIN are required for endoreduplication.

rastafari (rfi) triptychon (try




Two distinct cellular mechanisms to increase ploidy

DAPI FISH DAPI FISH

—

e.g. colchicine

Polyploidisation

“polyploid”

DAPI FISH FISH
Endocycle

% “polytene”

C

In collaboration with Yoshitaka Azumi



Bypassing endocycle defects by colchicine treatment can partially
rescue the cell size phenotype in hyp/rh//b/n

bin4 diploid
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Raising nuclear DNA content can partially rescue the organ size
phenotype in hyp/rhl/bin.

WT diploid bin4 diploid

WT tetraploid | bin4 tetraploid




hyp/rhl/bin are dwarfs but have nearly normal flowers.

30-day-old plants Flowers and siliques




HYP/RHL/BIN are all topoisomerase VI subunits.

HYPOCOTYL 6 (HYP6)

ROOT HAIRLESS 3 (RHL3) -  TOP6B
BRASSINOSTEROID INSENSITIVE 3 (BIN3)

HYPOCOTYL 7 (HYP7) = New TOP6 subunit
ROOT HAIRLESS 1 (RHL1)

BRASSINOSTEROID INSENSITIVE 4 (BIN4) = New TOPG6 subunit

(Curr Bio 2002, PNAS 2005, Plant Cell 2007)






Predicted role of DNA topoisomerase VI: decatenation

topoisomeraso
ATPase domain
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Predicted model of the plant topo VI complex

Archaeal topo VI

1t DNA
strand

2nd DNA strand

decatenation

@ o @

Plant topo VI

decatenation

2C 4C 8C 16C



RHL1 and BIN4 have weak homology to the C-terminus of
mammalian topo llo.

Archaeal topo VI

Arabidopsis topo VI

Mouse topo lla

Mouse topo IIf3

Arabidopsis topo Il

ATP hydrolysis
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ATP hydrolysis
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ATP hydrolysis

[ Tom

ATP hydrolysis

£ Tpm

ATP hydrolysis

- Tpm

CAP Tpm
A subunit
CAP Tpm RHL1 j BIN4
A subunit
“Regulatory Domain”
S —
o
CAP L
CAP -



TOPO Il is required for the mitotic cell cycle but not for the endocycle.

Light-grown Dark-grown

control 100 mM etoposide control 100 mM etoposide




Topo Il is involved in the mitotic cell cycle.

WT WT

control 100 mM etoposide

4-week-old callus induced from roots



How do cells switch from the mitotic cell cycle to the
endocycle?

mitotic cell cycle — =——— endocycle
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How do cells switch from the mitotic cell cycle to the

endocycle?

mitotic cell cycle
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Auxin gradients control the transition from the mitotic cell cycle to
the endocycle in the meristem.

endocycle
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(Ishida et al, Development in press)



Exogenously applied auxin blocks the endocycle progression.

Control + NAA 1uM
700 | 700 |
600 AC 600 4C
500 500
400 400
300 300
200 200
100 100
16C
0 0

14-day-old 15t true leaves Takashi Ishida



Cellular auxin signalling is mediated by the TIR-AUX/IAA-ARF pathway.

CYTOPLASM pH=7.0

(Vanneste and Friml 2009)



Reduced levels of auxin signalling promote the endocycle.

7-day-old cotyledons
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プレゼンター
プレゼンテーションのノート
You can see here that wild-type cotyledons, at 7 day after germination, have nice 2C and 4C peaks, showing some good populations cells are still in the mitotic cycle. Wild-type cotyledons also have nice 8C and 16C ploidy peaks, suggseting that some cell populations have entered the endocycle. 

By contrast, we found monopteros mutants, also at 7 day after germination, have lost most of 2C and 4C nuclei and have gained this extra peak at 32C. 


Reduced levels of auxin signalling promote the endocycle.
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Reduced levels of auxin transport promote the endocycle.
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プレゼンター
プレゼンテーションのノート
We also examined the ploidy distribution of several auxin transport mutants. And as you can see, both pinoid and van3 mutants show ploidy phenotypes very similar to the auxin signalling mutants. So again, you can see these reduced 2C and 4C peaks and increased peaks at 64C and 128C. 
 
So we think these data altogether provide genetic evidence that reduced levels of auxin signalling, caused either by auxin signalling problems or transport problems, facilitate the early transition from the mitotic cycle to the endocycle. 
 
However, because auxin plays major roles during the embryogenesis and many of the auxin mutants we have looked at do have pretty severe phenotypes in the embryogenesis, it is still possible that the endocycle phenotypes we see are actually just the downstream consequences of the embryonic defects. 
 
So we decided to test if we can induce endocycling, in post-embryonic tissues, by manipulating the auxin level. 


Blocking auxin signalling with an auxin antagonist BH-IAA converts
mitotic cells into endocyling cells.

+2,4-D I -2,4-D, + BH-IAA
] 2 days 3 days 4 days 5 days
0 day e

6C & °r 2C
' 12C DMSO

Arabidopsis MM2d culture cells
PEO-IAA from Kenichiro Hayashi In collaboration with Masaaki Umeda (NAIST)



Blocking auxin signalling with an auxin antagonist BH-IAA converts
mitotic cells into endocyling cells.

DAPI

Control

* >24C nuclei (13%, n=240)
MM?2d culture cells, 5 days after BH-IAA treatment Masaaki Umeda (NAIST)



The axr3-1 mutations result in an early onset of endocyling and
accompanying cell expansion in the root meristem.

B WT(Col), A WT(Col) C axr3-1

6-day-old roots, nuclei visualised by DAPI staining Takashi Ishida



Transient reduction of auxin signalling induces early endocycling.
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DAPI-stained nuclei in 6-day-old roots Takashi Ishida


プレゼンター
プレゼンテーションのノート
By using the heat inducible allele of the axr3-1 mutants, we could also show these cellular responses are strictly dependent on auxin depletion, because we can see early endocycling 


Transient reduction of auxin signalling induces early cell expansion.

22 °C 40 °C

E HS:axr3-1 G WT(Col) | HS:axr3-1
-heat +heat +heat

6-day-old roots Takashi Ishida


プレゼンター
プレゼンテーションのノート
and early cell expansion only after we induce the axr3 mutation. 


Auxin antagonists promote an early onset of endocycling.

DMSO + PEO-IAA 10uM
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0 50 100 150
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6-day-old roots, nuclei visualised by Histone2B-YFP
PEO-IAA from Kenichiro Hayashi Takashi Ishida



Reduced levels of auxin signalling rapidly block the expression of cell
cycle genes.
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6-day-old roots treated with 20mM PEO-IAA for 3hr In collaboration with Masaaki Umeda (NAIST)



Reduced levels of auxin signalling rapidly block the expression of cell
cycle genes.

CDKA;1 CDKBZ2;1 CYCAZ2;3 (CY(BI;1

(* P > 0.05)

6-day-old roots treated with 20mM PEO-IAA for 3hr Takashi Ishida



The expression of CYCA2;3 partially suppresses PEO-IAA-induced
cell differentiation.

PEO-IAA / -inducer PEO-1AA / +inducer 50

40
30
20

10

Meristem cell number

0

PEO-1AA - - +  +
inducer - + -+

(* P >0.05)

6-day-old roots; 1-day-treatment with B-estradiol (inducer) Takashi Ishida



Auxin gradients control the transition from the mitotic cell cycle to
the endocycle in the meristem.
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(Ishida et al, Development in press)



HPY2 acts downstream of PLT to promote the mitotic cycle and to
repress the endocycle transition.
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(Ishida et al, Plant Cell 2009)



How do HPY2 and GTL1 contribute to the size control?

genetic cues, environmental cues
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