2版

様 式 F-7-1

科学研究費助成事業(学術研究助成基金助成金)実施状況報告書(研究実施状況報告書)(令和2年度)

		, , , , , , , , , , , , , , , , , , , ,		,		
			機関番号	1 4 6 0 3		
所属研究	機関名称	奈良先端科学技術大学院大学				
研究 代表者	部局	先端科学技術研究科				
	職	准教授				
	氏名	香月 浩之				
1 . 研究種目名		挑戦的研究(萌芽) 2.	課題番号	20K21175		
3 . 研究課題名		振動ポラリトンを介したポテンシャル変調による光反応制御				
4 . 補助事業期間		令和 2 年度 ~ 令和 3 年度				
フェニルホスに強結合状態 認した。また た。 次に振動がき 赤外OPAを作 た。K3Fe(CN 用いてポンプ	こ金薄膜をコスホニルアジ 水ボニルアジ 水変が まが まが まが スペーサ ラリトン状態 が が が スペーサ が は が スペーサ が が スペーサ が が スペーサ が が は が スペーサ が が が は が は が は が は が は が は が は が は が は が は は が は が は が は が は は が は は は は は は は は は は は は は	ートした窓材を利用して中赤外波長のキャピティを作成し、主に波長5μm周辺に振動モードが行け、などの試料を用いてFTIR透過スペクトルの測定を行った。吸収線幅とFabry-Perotモードの総でいることを確認した。その際、サンプルによっては金薄膜の剥離などが生じるため、保護膜にとしてレーザー加工によって成形されたカプトンフィルムを用いることで、既製品のスペーサかを超高速分光で観測するため、フェムト秒再生増幅器の出力から差周波発生により、波長5μm居度の出力を確認した。これを光源としてポンププローブ光学系を構築し、non-cavity試料におり16,DPPAのいずれの試料でも、およそ10~20psの時間で過渡応答が減衰していることが確認され験を行ってみたところ、ポンプ光の集光により局所的に加熱され気泡が生じ、金薄膜がダメーシ生とそれに伴う衝撃波による影響であると考えられる。今後、この影響を軽減するためにフローみる。	は は は は い は い は い は い は い い の み い の み い の み り い り で り で り で り で り で り で り で り で り で	分裂幅を比較して、実際 グが有効であることを確 グウンすることに成功し ザーパルスを生成する中 パクトルの測定に成功し して、キャピティ試料を で確認された。原因はキャ		
6 . キーワ						
振動ボラリー	トン 強結合	状態 超高速分光				
7 . 現在ま	での進捗状	状況				
) おおむね順	調に進展している。				
に完了してい	いる。	とそれを用いたFTIR分光器による強結合状態の観測、フェムト秒中赤外ポンププローブ測定装置 プ光の集光による金薄膜のダメージがあげられる。この原因は、溶液との境界面でのキャビテー				
であると考え 考えられる。		の理由はフローセルの形状に問題があり、溶液が均等に流れるようになっておらず、泡がレーサ	デー照射の位置に	- 停滞していることなどが		

【研究代表者・所属研究機関控】

日本学術振興会に紙媒体で提出する必要はありません。

2版

8	今後の研究の推進方策	÷

ポンプ光の集光による金薄膜のダメージを回避するためにいくつかの改善手法を計画している。(1)フローセルの形状変更による液体スループットの向上、
(2)金薄膜の成膜手法の変更により、より基板との結合力の強い薄膜を作成、(3) ビームの集光スポット径を大きくしてフルエンスを減少させる、などの方法を
それぞれ独立に試みる予定である。これらを組み合わせることで、中赤外キャビティ試料における振動ポラリトン状態の時間分解分光計測を実現する。
また、現在の光学系は実験室内に開放状態で組まれているため、水蒸気や二酸化炭素の影響を受ける波長領域での実験を行うことができない。より幅広い試料へ
の応用を目指す観点から、差周波発生部分以降の光学系はチャンバー内に設置し、乾燥空気または窒素によるパージができるよう、改良する予定である。
金薄膜の反射により、十分なポンプ強度でポラリトンを生成できない場合には、金薄膜の代わりに誘電体多層膜によって波長5μm領域のみを閉じ込められるキャ
ビティを作成し、誘導ラマン励起によって振動励起を起こす手法も計画中である。このためには振動モードがラマン遷移、双極子遷移の両方に活性があることが
必要となるため、そのような分子を選定する。

9.次年度使用が生じた理由と使用計画

・バータといる。 サンプル用キャビティの成膜手法として、比較的安価なイオンプレーティング法を用いた成膜を業者に依頼していたが、レーザー集光によって膜表面の剥がれが 生じ、より高価なイオンスパッタリングなどの手法を用いる必要が生じた。このため、必要となる成膜費用が予定より高くなるため、その分の費用を捻出し2021 年度予算と合わせて使用する予定である。

10.研究発表(令和2年度の研究成果)

〔雑誌論文〕 計0件

〔学会発表〕 計2件(うち招待講演 0件/うち国際学会 0件)

1.発表者名

Garrek Stemo, Jonas Paletscheck, Hiroyuki Katsuki, Hisao Yanagi

2 . 発表標題

振動ポラリトンのラビ分裂強度の溶媒および試料濃度依存性

3 . 学会等名

分子科学会オンライン討論会

4.発表年

2020年

1.発表者名

Garrek Stemo, Jonas Paletscheck, Hiroyuki Katsuki, Hisao Yanagi

2 . 発表標題

Mode dependence of Rabi splitting in molecular polaritons

3.学会等名

日本化学会第101春季年会(2021)

4.発表年

2021年

2版

/ m == \	-1-14
[図書]	計0件

11.研究成果による産業財産権の出願・取得状況

計0件(うち出願0件/うち取得0件)

12.科研費を使用して開催した国際研究集会

計0件

13.本研究に関連して実施した国際共同研究の実施状況

_

14.備考研究内容紹介

https://mswebs.naist.jp/LABs/optics/research/detail/85							