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Abstract 
 
Based on τk notation, the test generation complexity of several existing classes of sequential 
circuits has been reconsidered. Some classes of easily testable sequential circuits that cover some 
cyclic sequential circuits have also been introduced. These classes include length-bounded 
testable circuits, time-bounded testable circuits and time-bounded validity-identifiable circuits. In 
this paper, we introduce two classes of sequential circuits, state-shiftable finite state machine 
realizations and counter-cycle one-hot design realizations, which are subclasses of k-time-
bounded testable circuits and k-time-bounded validity-identifiable circuits, respectively, where k 
is τ(n) and n is the size of the circuits .  
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1. Introduction 
 
It has been theoretically proved that the test generation problem is NP-complete. However, 

empirical observation shows that the combinational test generation complexity seems to be O(nr), 
for some constant r where n is the size of the circuit. It has been proved that the test generation 
problem of balanced sequential circuits, internally balanced sequential circuits and strongly 
balanced sequential circuits can be reduced to the combinational test generation problem. The test 
generation complexity of acyclic sequential circuits seems to be near to combinational test 
generation complexity but the problem may not be reducible to combinational test generation 
problem. 

In order to clarify the test generation complexity, we introduced τk notation in [1]. Let 
Tα(n) be the test generation complexity of a given class α of circuits. The class α is τk-equivalent 
if Tα(n)=Θ(τk(n)) and τk-bounded if Tα(n)=O(τk(n)), where k>0 and n is the size of the circuits. 
Based on τk notation, we concluded that balanced sequential circuits, strongly balanced 
sequential circuits and internally balanced sequential circuits are τ-equivalent. All circuits belong 
to these classes are acyclic. On the other hand, we identified three classes of easily testable 
sequential circuits that cover some cyclic sequential circuits. In these classes, backtracks between 
state justification, fault propagation and derivation of excitation state do not occur. The time 
complexity of derivation of excitation state is always τ-equivalent and the time complexity of 
justification and state differentiation are τ2-bounded, τ-equivalent or less. These classes of easily 
testable sequential circuits include length-bounded testable circuits, time-bounded testable 
circuits and time-bounded validity-identifiable circuits. The test generation complexity for the k-
length-bounded testable circuits is τ2-bounded if the parameter k is O(n) while the test generation 
complexity for k-time-bounded testable circuits and k-time-bounded validity-identifiable circuits 
is τ-equivalent (τ2-bounded) if the parameter k is τ(n) (τ(n2)).  

In this paper, we identify state-shiftable finite state machine realizations as a subclass of 
k-time-bounded testable circuits and counter-cycle one-hot design realizations as a subclass of k-
time-bounded validity-identifiable circuits, where k is τ(n). In Section 2, we introduce the state-
shiftable finite state machine realizations. In Section 3, another class called counter-cycle one-hot 
design realizations is presented. In Section 4, the conclusion is presented. 
 
2. State-Shiftable Finite State Machine Realizations 
 

A state-shiftable finite state machine [2] is a machine that possesses 
1. transfer sequences of length at most [log2m] to carry the machine from state s0 to state si 

for all i, and  
2. distinguishing sequences of length [log2m], which are arbitrary input sequences consisting 

of 2 input symbols, where m denotes the number of states. 
A sequential circuit that is realized from the state-shiftable finite state machine (FSM) is called 
state-shiftable finite state machine (FSM) realization.  
 
Theorem 1: State-shiftable FSM realizations is τ-equivalent if the following conditions are 
satisfied. 

1. The FSM contains a 2-column submachine equivalent to a binary shift register; 
2. The output logic sub circuit OL’ with input symbols ε0 and ε1 is separate from other logic 

sub circuits; and 
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3. All the next state logic sub circuits with input symbols ε0 and ε1 are separate from each 
other, where input symbols ε0 and ε1 shift bit 0 and 1, respectively into the least 
significant bit or LSB of the next state. 

 
Proof: Let m denotes the number of state variables, where qm-1 is the most significant bit or MSB 
while q0 is the least significant bit or LSB and the shift operation is from bit 0 to bit m-1. Let’s 
consider two types of single-faults in a given state-shiftable FSM realization, i.e. single-faults in 
output logic sub circuit OL’ with input symbols ε0 and ε1 and single-faults in logic sub circuits 
other than OL’.  
 
1. A single-fault in the output logic sub circuit OL’ with input symbols ε0 and ε1. 
 
 To generate a test sequence for a single-fault in OL’, firstly an excitation state se is 
derived to activate the fault and propagate it to the primary output as shown in Figure 1(a). 
 
 λf(se,ε)≠λ(se,ε) where λf means the faulty logic for OL’. 
 
 Secondly, se is justified by applying transfer sequence of length at most [log2m], which 
are consisting of input symbols ε0 and ε1, where m is the number of states. For example, if se=111, 
transfer sequence of length at most 3, which are consisting of ε1ε1ε1, is necessary to transfer from 
state 000 to se as illustrated by Figure 1(b). If the fault is detected before se is reached, the present 
state becomes the excitation state se. Note that state differentiation process is not required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1(a). Derivation of excitation state.   Figure 1(b). State justification. 
 
2.  A single-fault in a logic sub circuit other than OL’. 
 
 To generate a test sequence for a single-fault in a logic sub circuit other than OL’, firstly 
an excitation state se is derived to activate the fault and propagate it to a flip-flop or primary 
output. Secondly, se is justified by applying transfer sequence of length at most [log2m], which 
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are consisting of input symbols ε0 and ε1, where m is the number of states (Figure 1(b)). If the 
fault is propagated to a primary output or a flip-flop before se is reached, the present state 
becomes the excitation state se. Let si and sj be a fault-free state and faulty state, respectively, 
resulted from the derivation of excitation state and state justification. Lastly, the pair of states 
(si,sj) are differentiated by applying a distinguishing sequence of length [log2m], which is an 
arbitrary input sequence consisting of input symbols ε0 and ε1. 
 Let TE, TJ and TD denote the test generation complexity for the derivation of excitation 
state, state justification and state differentiation. 
 
 TE(n)=τ(n); 
 TJ(n)=O(n•log m)=O(n2) for log m=O(n); and  
 TD(n)=O(n•log m)=O(n2) for log m=O(n). 
 
Consequently, the test generation complexity of the state-shiftable FSM realizations is  
 
 TSSFSM(n) ≤ TE(n)+TJ(n)+TD(n) 
   = τ(n)+O(n2)+O(n2) 
   = τ(n). 
 
State-shiftable FSM realizations is τ-equivalent if the following conditions are satisfied. 

1. The FSM contains a 2-column submachine equivalent to a binary shift register; 
2. The output logic sub circuit with input symbols ε0 and ε1 is separate from other logic 

sub circuits; and 
3. All the next state logic sub circuits with input symbols ε0 and ε1 are separate from 

each other. 
Note that full scan designed circuits is a sub-class of the easily testable state-shiftable FSM 
realizations where the next state logic sub circuits with input symbols ε0 and ε1 are multiplexers 
of the scan flip-flops and the output logic sub circuit with ε0 and ε1 is logic sub circuit for the 
output of the last scan flip-flop in the scan chain. 
 
3. Counter-Cycle One-Hot Design Realizations 
 

Let si,1, si,2,…, si,Pi  denote the set of all distinct states (codeword states) that have si, as a 
possible next state. For each such state si,j, let x(i,j),1, x(i,j),2,…, x(i,j),N(j) be all input  combinations 
that have si,j as initial state and si as the final state. N(j) is the number of the input combinations. 
Then, the next-state equation (or function) for di that defines si in the one-hot assignment is 
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Let X(i,j) be a set consists of all input combinations that have si,j as an initial state and si as the 
final state. 
 

)}(1|{ ),,(),( jNpxX pjiji ≤≤=  
 
Let xi,1/z, xi,2/z, …, xi,U(j)/z, be all outgoing transition labels from state si that require setting z=1. 
U(j) denotes the number of input combination. Then, summing over all states s1, s2…, sVi with z 
activated at least once in an outgoing transition, we obtain 
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Lemma 1: For any one-hot design with codeword present state, 

hijhjijhji ssandssifXX ≠== ,,),(),( φI  
 
Proof: Let  1,,),(),(),( ==≠= jhjijihjhji qqandXXX φI . Note that qi,j and qh,j are outputs 
of same flip-flops. Let x(ih,j),c∈X(ih,j) where 1≤c≤| X(ih,j)|. From equation (1),  
 

cjihhi xatdandd ),,(11 == , which contradicts with si≠sh. 
 
Lemma 2: All the valid states of a resettable one-hot design realization are codeword states.  
 
Proof: Let sl be a next state of sl,k at input combination x(l,k),c. Let the one-hot design realization 
is in present state sl,k, which is a codeword state with bit ql,k ON. From Lemma 1, only one bit of 
next state is ON, that is dl.  
 
Lemma 2 implies that the next state is always a codeword state if the present state is a codeword 
state if the realization of a one-hot design is resettable. 
   
Lemma 3: Let sz denotes the state all bits OFF and si denotes a non-codeword state that is not sz 
and sk be a codeword state in a set S1 that is a subset of codeword states Scodeword. Then, 
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Lemma 4: Let si be a non-codeword state. Let Zk be the output combination generated by sk and 
an input symbol ε. The output symbol Zi generated by si and the input symbol ε, is 
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Counter-cycle one-hot design realization satisfies the following conditions. 
1. The number of codeword states is in O(n) and there exists a codeword checker of size 

O(n); 
2. There exists an input symbol ε that strongly connects all codeword states accordingly 

in a counter-cycle such that  
a. the output function λ(si,ε)=01 if the state transition function δ(si,ε)=s0; and  
b. the output function λ(si,ε)=10 if the state transition function δ(si,ε)∈SV-{s0}; 

and 
3. Output logic sub circuit OL’ with input symbol ε is separate from other logic sub 

circuits;  
4. All the next state logic sub circuits with input symbol ε are separate from each other, 

and 
5. The counter-cycle one-hot design realization is resettable, where si,s0∈SV, which is a 

set of all codeword states, s0 is the initial state of the counter-cycle and n is the size of 
the counter-cycle one-hot design realization. 

 
Theorem 2: Counter-cycle one-hot design realizations is τ-equivalent. 
 
Proof: Let’s assume the one-bit in each state of a given counter-cycle one-hot design realization 
is shifted 1 bit to the left for each transition and s0= 10 1 ⋅−m  as in Figure 2, where m is the number 
of codeword states and 10 −m  means the concatenation of (m-1) 0’s. Let’s consider two types of 
single-faults in the counter-cycle one-hot design realization, i.e. single-faults in output logic sub 
circuit OL’ with input symbol ε and single-faults in logic sub circuits other than OL’. 
 
 
 
 
 
 
 
 
 
 

Figure 2. Counter-cycle in the one-hot design. 
 

1. A single-fault in the output logic sub circuit OL’ with input symbol ε. 
 

To generate a test sequence for a single-fault in the output logic sub circuit OL’, firstly an 
excitation state se is derived to activate the fault and propagate it to the primary output. The 
excitation state derived se is always a codeword state by embedding codeword checker in the 
counter-cycle one-hot design realization while excitation state is being derived. Secondly, se is 
justified by applying input sequence of length at most m, which are consisting of input symbol ε, 
where m is the number of codeword states. If the fault is detected before se is reached, the present 
state becomes the excitation state se. Note that the step of state differentiation is not required. For 
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example, if se is 00001 and the initial state of the circuit is 00010, then the justification sequence 
of length 4, consisting of εεεε is necessary as illustrated in Figure 3(a) and 3(b). 

 
 
 
 
 
 
 
 
 
 

 
Figure 3(a). Derivation of excitation state.      Figure 3(b). state justification. 
 
2. A single-fault in a logic sub circuit other than OL’. 
 

To generate a test sequence for a single-fault in a logic sub circuit other than OL’, firstly 
an excitation state se are derived to activate the fault and propagate it to a flip-flop. Secondly, se is 
justified by applying input sequence of length at most m, which are consisting of input symbol ε, 
where m is the number of codeword states. If the fault is propagated to a primary output or a flip-
flop before se is reached, the present state becomes the excitation state se. Let si and sj be a fault-
free state and faulty state, respectively, resulted from the derivation of excitation state. Based on 
lemma 3 and 4, if the one-bit in si is more significant than all the faulty bits in sj, the fault is 
detected when the one-bit of si has been shifted during state differentiation and becomes the most 
significant bit. Let consider sj is a faulty state with one faulty bit D’. For the case where the faulty 
bit D’ in sj is more significant than the one-bit in si, the pair of state (si,sj) can be differentiated 
when the faulty bit D’ has been shifted and becomes the most significant bit during state 
differentiation. If the fault effect D is propagated to a state bit during the derivation of excitation 
state, the fault effect is guaranteed to propagated to a primary output in the next time frame since 
all bits of output symbol λ(sz, ε) are zeros based on equation 2, where sz denotes a state where all 
bits are zeros or OFF. Therefore, the pair of states (si,sj) can be differentiated by applying input 
sequence of length at most m consisting of input symbol ε, where m denotes the number of the 
codeword states. 
  Let TE, TJ and TD denote the test generation complexity for the derivation of excitation 
state, state justification and state differentiation. 
 
 TE(n)=τ(2•n)= τ(n); 
 TJ(n)=O(n•m)=O(n2) for m=O(n); and  
 TD(n)=O(n•m)=O(n2) for m=O(n). 
 
Consequently, the test generation complexity of the counter-cycle one-hot design realizations is  
 
 TCCOH(n) ≤ TE(n)+TJ(n)+TD(n) 
   = τ(n)+O(n2)+O(n2) 
   = τ(n). 
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Counter-cycle one-hot design realizations is τ-equivalent. 
 
 
4. Conclusion 
 

State-shiftable finite state machine realizations has been identified as a subclass of k-time-
bounded testable circuits where k is τ(n) and n is the size of the circuits if each FSM realization 
in this class satisfies the following conditions. 

1. The FSM contains a 2-column submachine equivalent to a binary shift register; 
2. The logics of all the next state functions with input symbols ε0 and ε1 are separate 
from each other; and 
3. The output logic and next state logic are separate from each other. 

Counter-cycle one-hot design realizations has also been identified as a subclass of k-time-
bounded validity-identifiable circuits, where k is τ(n) and n is the size of the circuits. In other 
words, state-shiftable finite state machine realizations and counter-cycle one-hot design 
realizations are τ-equivalent.  
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