Abstract:
Parasitic plants are worldwide threats that damage major agricultural crops. To initiate infection, parasitic plants have developed the ability to locate hosts and grow towards them. This ability, called host tropism, is critical for parasite survival, but its underlying mechanism remains mostly unresolved. To characterise host tropism, we used the model facultative root parasite Phtheirospermum japonicum, a member of the Orobanchaceae. Here, we show that strigolactones (SLs) function as host-derived chemoattractants. Chemotropism to SLs is also found in Striga hermonthica, a parasitic member of the Orobanchaceae, but not in non-parasites. Intriguingly, chemotropism to SLs in P. japonicum is attenuated in ammonium ion-rich conditions, where SLs are perceived, but the resulting asymmetrical accumulation of the auxin transporter PIN2 is diminished. P. japonicum encodes putative receptors that sense exogenous SLs, whereas expression of a dominant-negative form reduces its chemotropic ability. We propose a function for SLs as navigators for parasite roots.
Information:
Version:
none
Journal title:
Nature Communications
Vol(Issue):
13
(1)
Language:
en
Copyright:
© The Author(s) 2022 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.