DSpace Repository

Estimating Subjective Argument Quality Aspects From Social Signals in Argumentative Dialogue Systems

Show simple item record

dc.contributor.author Rach, Niklas en
dc.contributor.author Matsuda, Yuki en
dc.contributor.author Ultes, Stefan en
dc.contributor.author Minker, Wolfgang en
dc.contributor.author Yasumoto, Keiichi en
dc.date.accessioned 2021-05-25T07:55:02Z en
dc.date.available 2021-05-25T07:55:02Z en
dc.date.issued 2021-01-13 en
dc.identifier.uri http://hdl.handle.net/10061/14269 en
dc.description.abstract Information about a subjective user opinion towards an argument is crucial for argumentative systems in order to present appropriate content and adapt their behaviour to the individual user. However, requesting explicit feedback regarding the discussed arguments is often impractical and can hinder the interaction. To address this issue, we investigate the automatic recognition of user opinions towards arguments that are presented by means of a virtual avatar from social signals. We focus on two different user opinion categories (convincing and interesting) and two different types of social signals (facial expressions and eye movement). The recognition is addressed as a supervised learning problem and realized using the argument search evaluation data discussed in previous work. The overall performance is compared to a human annotation on a subset of the collected data. The results show that the machine learning performance is similar to human performance in both recognition tasks. en
dc.language.iso en en
dc.publisher IEEE en
dc.relation.isreplacedby https://ieeexplore.ieee.org/document/9321384 en
dc.rights IEEE is not the copyright holder of this material. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ en
dc.subject Computational argumentation en
dc.subject argument quality estimation en
dc.subject argumentative dialogue systems en
dc.subject social signal extraction en
dc.subject machine learning en
dc.title Estimating Subjective Argument Quality Aspects From Social Signals in Argumentative Dialogue Systems en
dc.type.nii Journal Article en
dc.contributor.transcription マツダ, ユウキ ja
dc.contributor.transcription ヤスモト, ケイイチ ja
dc.contributor.alternative 松田, 裕貴 ja
dc.contributor.alternative 安本, 慶一 ja
dc.textversion none en
dc.identifier.eissn 2169-3536 en
dc.identifier.jtitle IEEE Access en
dc.identifier.volume 9 en
dc.identifier.spage 11610 en
dc.identifier.epage 11621 en
dc.relation.doi 10.1109/ACCESS.2021.3051526 en
dc.identifier.NAIST-ID 86639523 en
dc.identifier.NAIST-ID 84367499 en
dc.identifier.NAIST-ID 73292559 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account