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ABSTRACT 

In this paper we present a novel approach to acoustic model甘ammg
for non-audible murmur (NAM) recognition using normal speech 
data transformed into NAM data. NAM is extremely soft murmur， 
that is so quiet that people around the speaker c加hardly hear it 
lt is detected directly through白e soft tissue of the head using a 
special body-conductive microphone， NAM microphone， placed on 
the neck below the ear. NAM recognition is one of the promis・
ing silent speech interfaces for man-machine speech∞mmumca・
tion. We have previously shown the e仔ectiveness of speaker adaptive 
training (SAT) based on constrained m似imum IikeIihood Iinear re・
gression (CMLLR) in NAM acoustic model training. However， since 
the amount of available NAM data is stiIl smaIl， the effect of SAT is 
limited. In this paper we propose modified SAT methods capable of 
using a larger amount of normal speech data by transforming them 
into NAM data. The experimental results demonstrate that the pro­
posed methods yield an absolute increase of approximately 2% in 
word accuracy compared with the conventional method 

Index Terms- silent speech interfaces， non-audible murmur 
recognition， acoustic model， speaker adaptive training， transformed 
normal speech 

1. INTRODllCTION 

Nowadays the accuracy of speech recognition systems is sufficiently 
high to be used in daily tasks. Even though there is confidence in 
the reliability of these systems， it is stiIl difficult to imagine people 
making use of these functionalities in everyday life. A feeling of 
discomfort or even embarrassment in talking to machines (such as 
phones釦d car)， disrupting silence in quite places， and a lack of prト
vacy are likely reasons why people may try to avoid such convenient 
and hands-free input interfaces 

Silenl speech inleゆces [1] have recently been studied as a tech・
nology to enable speech ωmmunication to take place without the 
necessity of emitting 釦audible acoustic signal. Various sensing 
dev日s， such as a throat microphone [2]， electromyography (EMG) 
[3]， and ultrasound imaging [4]， have been explored as altematives to 
air microphones. These sensing devices are e仔ì:ctive for soft speech 
in private conversation and as a speaking aid for people with a vocal 
disability 

As a sensing device for silent speech， Nakajima el al. [5] devel­
oped a non-audible murmur (NAM) microphone， which is a special 
body-conductive microphone. Inspired by a stethoscope， the NAM 
microphone was originaIly developed to detect extremely soft mur­
mur caIled NAM， which is so faint that people around the speaker 
C釦hardly hear it. Placed on the neck below the ear， a NAM mi・
crophone is capable of detecting various types of speech such as 
NAM， whisper， and normal speech t耐ough the soft tissue of the 
head. Moreover， it has greater usability than other devices such as 
EMG and ultrasound systems 

NAM recognition systems are not very different合'om曲ose utト
Iizing normal speech. In fact， language models， dictionaries， search­
ing algorithrns， and other specific modules may be used without 
any modi自cations at aIl. The only modifications required are in the 
acoustic model， which should match the acoustic features of NAM. 
However if we built a normal speech acoustic model for NAM， it 
would take many years to gather sufficient training data.. and obtain 
satisfactory accuracy in NAM recognition. One possible shortcut is 
to use currently existing normal speech databases. As reported in 
[6， 7]， normal speech data can be used to generate 加initial acous­
tic model， then model adaptation techniques (e.g.， [8]) c釦be ap­
plied to it to develop a speaker-dependent NAM acoustic model us­
ing a small amount of NAM data. lt was been also reported in [9] 
that speaker adaptive training (SAT) [10] yields significant improve­
ments in NAM recognition accuracy by refining the initial acoustic 
model using only the NAM data of several tens of speakers 

In this paper we propose a novel approach to NAM acoustic 
model training to向rther increase the accuracy of the NAM acous・
tic model. Some of the canonical model parameters updated in the 
conventional SAT are not well optimized since the available NAM 
data are stilI limited. Inspired by a speech synthesis technique for 
transforming NAM into normal speech [1 1]， the proposed method 
transforms acoustic features of normal speech into those of NAM 
to e仔ectively increase the amount of NAM data available in SAT. 
This is achieved by modifシing the SAT process on the basis of con­
strained maximum likelihood linear regression (CMLLR) [8]. ηle 
experimental results of出e proposed methods indicate an increase 
in absolute word accuracy of approximately 2% compared with the 
conventional method 

ηlis paper is organized as follows. In section 2 we give a short 
description of NAM. In section 3， previous work on NAM reωg­
nition including SAT for NAM and limitations of this approach are 
described. In section 4 we explain the proposed method in more 
detail， which is followed by its evaluation in section 5. Finally， we 
summarize this paper in section 6 

2. NON-AUDlBLE MURMUR (NAM) 

NAM is defined as the articulated production of respiratory sound 
without using the vibration of vocal folds. It is modulated by various 
acoustic filter characteristics as a result of the motion and interaction 
of speech organs， and is transmitted through the soft tissues of the 
human body [5]. NAM can be detected with a NAM microphone 
attached on the surface of the human body. According to Nak句Ima
et al.， the optimal position for a NAM microphone is behind the ear. 

刊e sampled signal is weak and is amplified before analysis by 
speech recognition tools 刊e amplified NAM is stiIl fairly intelligi・
ble and its sound quality is unnatural since high frequency compo­
nents over 3 or 4 kHz are severely attenuated by the features of body 
conduction such as the lack of radiation合om the lips and the e仔ect
of the low-pass characteristics of the soft tissue. 
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3. DEVELOPMEN T  OF NAM ACOUSTIC MODEL 

3.1. Previous Work 

NAM utt釘釦ces recorded with a NAM microphone can be used to 
回in speaker-dependent hidden Markov models (l動制s) forNAM 
re∞gnition.ηle simplest way to build a NAM a∞ustic model would 
be to start from scratch and utilize only NAM samples. However. this 
method would require a large創nount of training data， which is not 
available for NAM. 

Another method of building a NAM a∞凶tic model would be 
to re回in a speaker-independent normal sp伐ch model using NAM 
samples. ηlis method requires less training data ∞mpared with 

釘aining合om scratch. In [6) it was問ported白紙組 iterative MLLR 
adaptation process using the adapted model as由e initial model in 
the next EM (expectation-m似imization algori白rn)iteration step is 
very e能ctive because the a∞ustic characteristics ofNAM are ∞n­
siderably di能rent命om those of normal speech 

We previously demonstrated that the use of a canonical model 
for NAM adaptation that is釘創ned using NAM data in the SAT 
parad噂n yields signi自cant lmprovements tn 白e perform飢ce of 

NAM re∞gnition [9). A schematic representation of出s method is 
shown in figure 1. ln CMLLR・based SAT. the speakeトdependent
CML山an伽n W�AM)=トグAM)，A� AM)] is applied to 

K先制re vec町ojn) ぉfollows:

bjn)=AJYAM)oin)+biNAM}=wiNAM)CF，(1) 
where n ε {1，・・. ，N}組d t E {1，・ー ， Tn} are indexes for the 

NAM speaker and tÎnle. respectively. and C�n) is the extended feature 

vector [l， O�n)T ] T 
The a川町加ction of the EM algori伽m

SAT is given by 

Q ({>.， W�ゲM)}，{，\，W�γM)}) 

ぽ治会主7以叩} (2) 

where mε {1γ.. ，M} is an index of Ga凶sian component， 
W�γM) is枇制 of spe紘吋ependent CMLLR岡山rms
{w(NAM) W{NAM)l d 1 ， ， .... N r 

ιロア= logl丸|ーl叫AプAM)12
(，i，(NAM)，.(n) �. \ T "， - 1 (，.，(NAM)，.(n) �. \ + (W;: --- -'C)一μm) �m-(W;:--- -'，)一μm) . (3) 

In白e E・s町・7江� is calculated as the posterior p帥abil町of com­
ponentmge附ating feature vec伽 oln) given the current model pa­
rameter setλ 白e C恥住LR釘飢sform set W\NJVAM). and the fea-I :N 
ω…伽鈴q… {oin}， ， oZ}) Me M-叫恥Ipdated

model parameter setλincluding the mean vector Pm 釦d covari飢ce
ma町ix主m of each Gaussian ωmponent and the updated CMLLR ゐ(NAM)transform set Wì�N----' are sequentially determined by maxÎnlizing 

白e auxiliary function. The initial model parameter set for SAT is 
set to that of a speaker-independent model developed using normal 
speech da泊sets consisting of voices of several hundred speakers. 
Finally. a speaker-dependent model for individualゅe紘ers is de­
veloped from the canonical model using iterative MLLR me飢 釦d
variance adaptation 

Fig. 1. Schematic representation of conventional SAT process 

Note that multiple linear釘組sforms are used for each speaker 
ηle Gaussian ∞mponents are automatically clustered according 
to the創nount of adaptation data using a regression-田e・based ap­
proach [12) 

3.2. Problem 

Even though the conventional SAT method produces some improve­
ment in re∞伊ition acc町acy. further Înlprovements are essential 
for the development of a NAM reωgnition interface. One of the 
problems in血is method continues to be the Iimitation of 甘aining
data刊is is a serious problem when using a normal speech a<∞us・
tic model including many HMM model parameters as the starting 
point. Although such a compliω.ted acoustic model is well adapted 
to NAM data in MLLR or C恥且LR adaptation since all Gaussian 
∞mponents are transformed by effectively sharing the same linear 
transform among different ∞mponents. it generates one issue in the 
development of the canonical model. Sinωeach Gaussian ∞mpcト
nent is up白.ted using ∞mpone泊t・dependent sufficient statisticsω1・
culated 合omNAM data， there are many components that are not 
well updated due to the lack of training data. Consequently. the ef­
fectiveness of SAT is reduced or lost for such ωmponents. adversely 
a能cting the adaptation performan∞ー

4. IMPROVING NAM ACOUSTIC MODEL USING 
TRANSFORMED NORMAL SPEECH DATA 

4.1. Proposed SAT Using Transformed Normal Speech Data 

A schematic representation of the proposed method is shown in 自g­
町e 2. To normalize acoustic variations caused by加白 speaker diι 
ferences and spe紘ing style differences (i.e.. di能rences between 

NAM and normal speech).白e speaker-dependent C恥乱LR trans・
fom w iS 2 N ) = トド[b�S2γ?S幻2ベN
ol.) of no附o口rmal spee飢ch as follows 

δ�.) = A�S2N)O�') + b�S2N) = W�S2N)C�')， (4) 

where sε{1，... ，S} is白e index for a speaker of normal speech 
The auxiliary function in 出e proposed method is given by 

Q({λ，W�γM)，wr}}，{A，wiγM}，wr)}) 

寸ささか間ア)+会2272L4中)

W哨here W附;号アN) iβs t恥he鈴副t oぱf市蜘骨伊阿問n蜘Id仇伽伽削町m削n此t印CM比LLはR 回剛n帥由rmss 
ぬ伽加r印norm叩rma印ω帥叫h {W�S2門s幻釧2制N)， . . . ，W�S2戸叩川N川)}.川釦d

4ti=log|主mトlog IÂ�S2N) 12 
" . /CO .，， " 、 、T ‘ ， ，�内a 、 、+(Wγ"'C)町一九) �m. (W�--."Cl') - βm)' (6) 
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Fig. 2. Schematic representation of proposed SAT process described 
in section 4. 1 .  

I n  the E・蜘p， the po取rior p帥abilities 1'!:.)t and 1'��t are calculated 
合om the current model parameter setλand the CMLLR transforrn 
S出W��:M) and W�ア). ln the M-step， the model parame町制
and由eCMLLR位制sforrn sets are sequentially updated.ηle initial 
model parameter set for SAT is set to that of the canonical model 
developed by the conventional SAT process described in section 3. 1 .  
Multiple linear甘ansforrns are used for each speaker. 

4.2. Proposed SAT with Factorized Transforms 

Because the acoustic characteristics ofNAM ar官considerably di汀er­
ent from those of norrnal speech， a more complicated回nsforrnation
wi11 be effective for transforrning the norrnal speech data of di仔erent
speakers into the NAM data of a canonical speaker. Such a com­
plicated transforrnation c釦 be achieved by increasing the number 
of linear甘ansforrns， but the estimation acc町acy 0 f the 1 inear仕組s­
forrns wil1 suffer合om a decrease in the創nount of adaptation data 
available for the estintation of each甘ansforrn. To make it possible 
to e能ctively inαease the number of linear transforrns whi1e main­
taining a sufficient1y high estintation accuracy， factorized甘ansforrns
are applied in the proposed method 

A schematic representation of the proposed method using the 
factorized transforrns is shown in figure 3. The C恥fi.LR tr組s-
forrn W�S2N) = トドドiYS叩A�γ?門S幻S2N訓N)] β凶f批伽hお矧c“tor削 int日削t

甘組sfぬorrns: 0叩ne ls a sp戸ea紘ke釘rト-d仇epe叩nd必e叩nt甘釦sfiゐ0ロn m nor口rrnτ官澗mals叩pe伐ecぬh，
wisp) = トド[b�SP) ， A�S少門什S 伊m汁P門勺)] 釦d白批e o由耐伽E町r…1路IS a spe帥紘e軒削ト円i附"悶nd仇e叩n

附甘凶an】s巾命伽伽伽m首I山nn山norrn向e閃悶則tω吋CIω】

A?少門2訓N)]. T恥川ぬ恥加cω伽tω伽0町n刷甘剛組由rrns釘悶ea勾柳appl押附pμl附o白批e先伽a制ωr陀'eve附eωct
0ぱfno】ωorrn町ma温1 s叩peech as fol1ows: 

bjs)=AY2N)併�SP)ols)+ b�寸+W2N) = W��2N)cl') ， (例7η ) 

W叫he問陀白白ec∞，omp伊0附甘飢巾m Wi?N} 町
|μAY?2N川)b此ぜiYSP)同+b説ぜi?S2N()人'Ai?S2N川)A�SP叶)リ11. The auxili町伽ctlon m 
the proposed method using the factorized tr飢sforrns is given by 

Q伶，W\γM!Wぽ!wY2q，ow;γM!wi7JW付加
唱 ( N Tn M S T. ル1 \ 

ぽ一t討I�ε=�ε:乞7
叫
rμL

口
句ア+�ε=�ε=�乞:7

似
ど
児

!
Lμ
tJd乙

where 

、\、n=l t=1 m=l .5=1 t=1 m=l I 

d幻= logl丸ト同 14sγ _ log IÂ�S2N) 12 

/ ... (Ç?N、 4 、 、T ... _1/A/.C:?刷、 、
+(W�工一'C;S) - {1m ) Em' (W�才一'C;S) - {1m ) . (9) 

Multiple linear回nsforrns are used for each speaker and for the 
speaker-independent style transforrnation. The canonical model de­
veloped by the conventional SAT process described in section 3. 1 is 
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Fig.3. Schematic representation of proposed SAT process described 
in section 4.2. 

ωed as白e initial model.百le speaker-dependent transforrns in nor­
mal speech， W�SP)， are initialized by the c∞0叩n附1
uωsmgo叩nl砂y noωorrn官ma討1 speecぬhdωat仇a. where the sp戸ea紘ke釘r-indep戸end“.en削It no町r­
mal speecぬh m叫el i隠su凶se吋da舗st白he init凶model. In川t曲 hi白sp伊ap戸er， W�γSP門

} 

卸fixed tωot恥he ini削Eはti凶a1i悶zed param出rs 出roughout恥proposed SAT 
processηley may a1so be updated iteratively. 

Note that the number of style transforrns is easi1y increased since 
al1 norrnal speech data創官E貸i:ctively used for their estimation. Con­
sequent1y， a larger number of composite transforrns is avai1able， than 
the number of speaker-dependent回nsforrns avai1able in the other 
proposed SAT pr'ωess described in section 4.1 .  

4.3. Implementation 

We have found 白紙if bo白 norrnal speech data and NAM data are 
used sintultaneously to u凶ate山canonical model par制府民自E

NAM re∞gnition accuracy of the speaker-dependent adaptation 
mode1 generated 合om the updated canonical model tends to de­
crease considerably. This is beca凶e the proposed method does not 
perfect1y map norrnal speech features into NAM feaωres創ld the 
canonical model matches norrnal speech features better由加NAM
features due to the use of a much larger amount of norrnal speech 
data than NAM data. 

To avoid this issue， in白is paper the transforrned norrnal speech 
data are only used to develop the first canonical model， then，血IS
model is further updated in SAT using only NAM data. Namely， 
after optimizing恥speak釘 -depend側linear胸Sゐm鈴tW�ぎN)
or 批町le仕組巾rrns W�S2N) while fixing山mode1 parameters 
to the initial values (i.e.，血e canonical model parameters optimized 
in conventional SAT using NAM data)， the model paramete路are
updated using only transforrned norrnal speech data by maximizing 

批 part of山auxili町 伽ction related to C��:"いn Eq. (5) or 
乙:(，;:'1 in Eq. (8). The model parameters are final1y updated in恥

SAT process using on1y NAM data by maximizing白e part of 出e
印刷町向nction related to C':.�.t;1) In帥intplementation，恥
proposed methods are only di能rent合om the conventional method 
in that the initial model par沼田ters in SAT with NAM are developed 
using白e transfoロned norrnal speech data 

5. EXPERIMENTAL EVALUATION 

5.1. Experimental Conditions 

Table 1 shows the amount training and test dataηle starting aωus­
tic model was a speaker-independent (SI) three-state left-to・right
tied-state triphone HMM for norrnal speech， for which each state 
output probability density was modeled by a Gaussian mixture 
model (GMM)問th 16 mixture components. The total number of 
triphones was 3300 ηle employed a∞ustic feaωre vector was a 
25・dintensional vector including 12 MFCC， 12 ð. MFCC， and ð. 
Energy. A dictionary of approximately 63 k words (multiple pronun­
ciations) and a bigram language model were used during decoding 
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l Type 
T'able 1. Training 釦d test sets 

I Training I Test 
Nonnal 298 speakers . 

speech 46980 utterances 
(SP) 84.4 hours 

NAM 42 speakers 41 speakers 
8893 utterances 1023 utter釦ces
15.5 hours 1.83 hours 

--43 
345『­

-47 
室 -49 ー 胤Mrt/ ♀ ....... 二 二二 ・ 品+伊

-ó3� 

1 2 3 4 5 6 7 8 9 10 
t耐富加15

Fig. 4. Change in log-scaled likelihoods for training utter釦ces.

ηle regression-甘ee based approach was adopted to dynamica1ly 
detennine the regression classes used to estimate multiple CMLLR 
甘ansfonns. In 批 SAT process， the average numbers of speaker­
specific linear transfonns for nonna1 speech and for NAM were ap­
proximately 104初d 1 10， respectively. The number of style位制s­
fonns合om nonnal speech to NAM was manua1ly set to 256 

5.2. E'lperimental Results 

To iIIustrate白e implementation issue described in section 4.3，白e
proposed SAT with the factorized transfonns was perfonned using 
bo出 NAM data and nonnal speech data to update the canonica1 
model. Figure 4 shows恥change in log-likelihoods of the training 
utterances ofNAMωd nonna1 speech with the number of adaptive 
iterations i目白e SAT process. In each iteration the NAM speaker­
dependent Cルfi..LR transfonns and style transfonns were ca1culated， 
and 出en the canonica1 model was updated. It can be observed合om
this figure 出at during the iterative estimation， the likelihood for nor­
ma1 speech data tends to increぉe while白紙forNAM data tends to 
decrease. Consequently， the resulting canonica1 model caused the 
degradation ofNAM re∞gnition accuracy. 

To demons町ate白e effectiveness of the proposed me白ods， 出e
C釦onica1 models were developed by the proposed SAT methods 
based on 出e implementation in section 4.2 釦d the conventiona1 SAT 
method， and then the speaker-dependent models were built 合om
each canonical model using the CMLLR adaptation. Figure 5 shows 
the results wi白 a 5%ωn自dence level.刊e proposed methods yield 
signi白cant improvements in word accuracy (WACC) ∞mpared with 
the ωnventional method. We found白紙 1 1 15 triphone models (ap­
proximately 1/3 of the HMM set) were not observed in 出e NAM 
training data ηle canonical model parameters in these states were 
not updated at all in the conventional SAT. on the other hand， they 
were updated in the proposed methods using the transfonned nonna1 
speech data. This is one of 出e m句or factors yielding the improve­
ment in WACC shown in 白gure 5. Moreover， it can a1so be observed 
that the use of the factorized transfonnations yields a slight improve­
ment in the proposed method. 

I These experimental conditions are 副作èrent from th'Ose in [9J 
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Fig. 5. Word accuracy of different me出ods

6. CONCLllSIONS 

In this paper， we proposed modified speaker adaptive 回ining (SAT)
methods for building a canonical model for non-audible munnur 
(NAM) adaptation so as to make available a larger amount of nonna1 
speech data甘釦sfonned into NAM data in the甘aining. The exper­
imenta1 results demonstrated that the proposed methods yield sig­
nificant improvement in NAM recognition accuracy ∞mpared with 

白e conventiona1 SAT me出od since it is capable of extracting more 
infonnation命om nonnal speech data and applying it to the training 
process of the NAM acoustic model. Moreover， the use of factorized 
transfonnations in the proposed 脱出od yields a slight improvement 
in the perfonnance ofNAM re∞gnition. A further investigation wil1 
be conducted on regression甘ee generation in the SAT process. 
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