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On the Minimum Weight of Simple Full-Length Array LDPC Codes

Kenji SUGIYAMA ', Nonmember and Yuichi KAJI'®, Member

SUMMARY  We investigate the minimum weights of simple full-length
array LDPC codes (SFA-LDPC codes). The SFA-LDPC codes are a sub-
class of LDPC codes, and constructed algebraically according to two in-
teger parameters p and j. Mittelholzer and Yang et al. have studied the
minimum weights of SFA-LDPC codes, but the exact minimum weights of
the codes are not known except for some small p and j. In this paper, we
show that the minimum weights of the SFA-LDPC codes with j = 4 and
j =5 are upper-bounded by 10 and 12, respectively, independent from the
prime number p. By combining the results with Yang’s lower-bound limits,
we can conclude that the minimum weights of the SFA-LDPC codes with
j =4 and p > 7 are exactly 10 and those of the SFA-LDPC codes with
j=5are10or 12.

key words: LDPC code, simple full-length array LDPC code, minimum
weight, minimum distance

1. Introduction

This paper discusses the minimum weights of codes in a
certain subclass of low-density parity check codes (LDPC
codes). The minimum weight (the minimum distance) is
one of the most fundamental and the most significant pa-
rameters to evaluate the performance of linear block codes.
However, unfortunately, it is difficult in general to obtain
the exact minimum weight of a long practical LDPC code.
Tanner discussed in [11] a certain bound on the minimum
weights of LDPC codes by using the Tanner Graph. Hu and
Fossorier proposed a probabilistic procedure to compute the
minimum weight of LDPC codes by using a decoding al-
gorithm for LDPC codes [6], and Hirotomo et al. proposed
another probabilistic procedure [5] that uses the Stern’s al-
gorithm.

If we restrict ourselves to LDPC codes with cer-
tain structures, then more analytical approach is possible.
MacKay showed that the minimum weights of regular-
Quasi-Cyclic LDPC codes with column weight j are less
than or equal to (j + 1)! [7], and Fossorier discusses the
minimum distance of Quasi-Cyclic LDPC codes from cir-
culant permutation matrices [4]. Mittelholzer has derived in
[8] some upper-bound limits of the minimum weights of cer-
tain array LDPC codes [2]. Array LDPC codes are a class of
LDPC codes that are algebraically constructed from a family
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of array codes [1], [3]. Mittelholzer assumes some more ad-
ditional conditions on the array LDPC codes, and thus it will
be better to distinguish the investigated class from the class
of general array LDPC codes. In this paper, we name sim-
ple full-length array LDPC codes (SFA-LDPC codes) for the
class of LDPC codes that Mittelholzer investigates. A SFA-
LDPC code is defined according to two integer parameters
p and j. Let Cs(p, j) denote the SFA-LDPC code defined
by p and j. Mittelholzer showed that the minimum weight
of the SFA-LDPC code C4(p,4) is 12 or less [8], which sig-
nificantly improves the upper bound limit (4 + 1)! = 120
given by MacKay [7] for general regular LDPC codes. Mit-
telholzer also showed that the minimum weight of the SFA-
LDPC code C4(p,5) is 20 or less.

The study of Mittelholzer is followed by Yang et al. in
[12]. Mittelholzer discussed the upper-bounds of the mini-
mum weights of C4(p, j), but Yang discussed their lower-
bounds. With very careful analysis, Yang showed that
the minimum weight of C4(p,4) is 10 or more if p is a
prime number greater than 7. Together with Mittelholzer’s
upper-bound, this result implies that the minimum weight of
Ca(p,4) is either 10 or 12, because C4(p, j) does not have
odd-weight codewords.

In this study, we partly make use of Yang’s analytical
approach to discuss the upper-bound limits of SFA-LDPC
codes. Through the analytical discussion, we can consider
minimum weight codewords in a certain “normal form.” We
generated the minimum weight codewords in the normal
form for several code parameters, and found that the gen-
erated codewords have common structures that are indepen-
dent from the parameter p choices. By carefully analyzing
the structure, we are able to show that C4(p,4) contains a
codeword with weight 10, and that C4(p, 5) contains a code-
word with weight 12. Together with the previously known
results, this implies that the minimum weight of C4(p, 4)
is exactly 10 for p > 7, and that the minimum weight of
Ca(p,5) is either 10 or 12.

2. Preliminaries and Known Results
Let p be a prime number, and k and j be integers satisfying

k, j < p. The binary simple array LDPC code Cx(p, j, k) is
the null space of the pj X pk binary matrix
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Table1 The minimum weights of C4(p, j).
p [ j=4]j=5]j=6
5 8 - -
7 8 12 12

11 10 10 16
13 10 12 14
17 10 12 N/A
19 10 12 N/A
23 10 N/A N/A

79 10 N/A N/A
“N/A” denotes that the results are not available due to large
computational time.

I P .. Pkl
HA(p’ j’ k) = . . .
;] pil PpU-Dik-1)

where [ is the p X p identity matrix and P is a cyclic shift
matrix defined by

00 0 1
10 00
p_|0 1 00
00 - 10

Now we consider a special case such that k = p, and
call this special array LDPC code a simple full-length array
LDPC code (SFA-LDPC code for short). The “array LDPC
codes” discussed in [8] and [12] are indeed this SFA-LDPC
codes. For simplicity, Ca(p, j, p) and Hs(p, j, p) are respec-
tively written as C4(p, j) and Ha(p, j). We denote by d(p, j)
the minimum distance of Cx(p, j).

In the rest of this section, we summarize known results
on the minimum weights of SFA-LDPC codes.

For the case j = 2 We can easily show that d(p, 2) = 4 for
any prime number p > 3.

For the case j = 3 Yang et al. has shown that d(p,3) = 6
[12]

For the case j = 4 Mittelholzer showed that d(p,4) is 12 or
less [8]. Yang showed that d(p,4) = 8 for p = 5 and
p = 7, and that d(p,4) is 10 or more if p > 7 [12].
Therefore d(p,4) with p > 7 is either 10 or 12.

For the case j = 5 Mittelholzer showed that d(p, 5) is 24 or
less [8]. The lower-bound of d(p,5) with p > 7 is
10 or more, which is obtained from Yang’s result for
Jj =4, and a simple observation that d(p, j;) > d(p, j2)
if j; = jo.

For the case j = 6 Mittelholzer showed that d(p, 6) is 32 or
less [8]. The lower-bound of d(p, 6) with p > 7 is 10
or more, as in the case j = 5.

The authors have investigated the minimum weights
of SFA-LDPC codes from an experimental approach [9].
We developed an algorithm that efficiently generates some
of minimum weight codewords, and have computed exact
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minimum weights of some SFA-LDPC codes. The results
are summarized in Table 1. We can see from the table that
d(p,4) is 10 for all prime numbers p from 11 to 79. From
this result, it comes quite natural to conjecture that d(p,4)
is always 10 for an arbitrary p greater than seven. Similarly,
for the case j = 5, d(p, 5) can be upper-bounded by 12 for an
arbitrary p greater than seven. The following sections are to
give analytical and constructive proofs to these conjectures.

3. Structures and Properties of H 4(p, j)

This section is to discuss the structural property of the check
matrices of SFA-LDPC codes.

3.1 The ¢ Notation

It can be easily shown that column vectors in Hu(p, j) are
all different, and that every codeword in C4(p, j) has even
weight. It is also obvious from the definition that a column
vector of H(p, j) can be decomposed into j subsequences
that have length p and weight one. That is, if we write
Hy(p,j) = [m) (1 <i < p*and 1 <[ < pj), then the
weight of the subsequence

T
h: = (hp(r—l)+l,i, hp(r—l)+2,i’ s hp(r—l)er,i)

is exactly one forany 1 <i< p*and 1 <r <.

For a vector v with weight one, let ¢(v) denote the po-
sition of the nonzero component in v where the first compo-
nent of v is indexed as zero. For example, ¢((0, 1,0,0)7) = 1
and ¢((0,0,0,1)7) = 3. The value of ¢ is not defined
for a vector whose weight is not one. Extend this ¢ no-
tation to a column vector b; = (hjT,m;7,...,K/T)T =
(h1 hay ... hyi)" of Ha(p, j) in such a way that

(k) = G, o)),
and also extend the notation to the matrix Hy(p, j) as

¢HA(p, ) = [p(h1), ..., ¢(hy2)].

For example, the check matrix of C4(3,2)

1 001 00T1UO00
01 001 0O0T10O0
001001001

HiG2D=11 90001010
01 01 000O0 1
001010100

is written by the ¢ notation as
012012012
PHAGD)= g | 2 1 202 0 1|

(1

The ¢ notation contributes to represent vectors and ma-
trices in a compact manner. Furthermore, it is helpful to
understand the structure of check matrices of SFA-LDPC
codes, as illustrated in the following lemmas.
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Lemma 3.1: For integers k and k" with 0 < k,k’ < p, the
(pk + k' + 1)-th column vector of ¢(Ha(p, j)) is
K,k +k,... .k +(G-Dk" (mod p).

Proof.  Obvious from the construction of Hy(p, j). O
Lemma 3.1 means that components in a column vector
in ¢(Ha(p, j)) constitute an arithmetic sequence. The
next lemma implies that two different column vectors in
d(H4(p, j)) cannot have two or more common components
in common positions.

Lemma 3.2: Consider two different columns ¢(h;,) and
¢(hi,) in (Ha(p, j)) (thus iy # i and 1 < iy, iy < p?). If
the j;-th components of ¢(h;, ) and ¢(h;,) are the same, then,
for any other j, with j; # j, and 1 < j, < j, the j-th
components of ¢(h;,) and ¢(h;,) cannot be the same.

Proof.

This lemma is easily shown since the construction of
SFA-LDPC codes satisfies the condition of the Theorem?2.2
of [4].

O

Note that ¢(Hx(p, j)) has p2 column vectors. Hence
the next corollary follows from Lemma 3.2.

Corollary 3.3: For any j; and j, with 1 < j;, j» < jand
Jj1 # Jj2, and for any a and b with 0 < a,b < p — 1,
¢(Hu(p, j)) contains exactly one column vector whose ji-
th and j,-th components are a and b, respectively.

3.2 Supports and Cancel-Out Condition

For a binary linear block code C, a vector v is a codeword
of C if and only if Hv" = 0 mod 2 where H is the check
matrix of C. This basic property can be stated in terms of
the ¢ notation.

Definition 3.4: A collection of integers gi,q2,...,q, is
said to satisfy the cancel-out condition if no integer appears
odd times in g1, g2, . . ., gn-

Lemma 3.5: Letuy,...,v, be binary vectors with length p
and weight one. We have v; + --- + v, = 0 mod 2 if and
only if the collection ¢(vy), . .., ¢(v,) satisfies the cancel-out
condition.

Proof.  Obvious since the sum is taken under the modulus
of two. O

Letv = (vy, ..., v,2) be a binary vector of length p2, and
let h; denote the i-th column vector of Ha(p, j). The vector
v is a codeword of Cy(p, j) if and only if Ha(p, v’ = 0
where the operations are taken under the modulus of two.
Thus, v € C4(p, j) if and only if column vectors in

(|l <i<p*v=1)
sum to zero under the modulus of two. Now define

supp(v) = {p(h)Il < i < p* v = 1),
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and call it the support’ of v. The support contains the col-
umn vectors of ¢(H4(p, j)) that correspond to nonzero com-
ponents of v. When there is no fear of confusion, we write
a support (a set of column vectors) as a matrix, and call it a
support matrix of the vector v. For example, a support

o 05 )

can be written as
0 0 2
0 1 0
We note that the order of column vectors in a support matrix
has no significance.
If a vector v is a correct codeword, then the binary rep-
resentation of column vectors in the support supp(v) sum

to zero. By applying Lemma 3.5 to components of column
vectors in the support, we have the following corollaries.

Corollary 3.6: A vector v is a codeword of Ca(p, j) if and
only if the cancel-out condition holds for all rows of the
support matrix of v. In this case we say that the support
supp(v) (and its corresponding support matrix) satisfies the
cancel-out condition.

Corollary 3.7: The SFA-LDPC code Cy(p, j) contains a
codeword of weight w if and only if ¢(Ha(p, j)) has a sub-
matrix that has w columns and satisfies the cancel-out con-
dition.

Consider for example the check matrix ¢(Hs(3,2))
given in (1). If we choose from ¢(H4(3,2)) four column
vectors that are represented as

00 2 2
[ 01 01 ] ’

then the support matrix satisfies the cancel-out condition.
Note that the four column vectors constitute the support
supp(v) for v = 100101001, and that v is a correct codeword
of C4(3,2). Any combination of three or less column vec-
tors cannot satisfy the cancel-out condition for this matrix,
and we can conclude that the minimum weight of C4(3,2)
is four.

3.3 Support Matrices in a Normal Form

To discuss the minimum weights of SFA-LDPC codes, we
investigate supports that are in a special form. Assume that
an SFA-LDPC code C4(p, j) has a codeword v which has a
nonzero component at the first symbol position. Since the
first column vector of ¢(H(p, j)) is an all-zero vector of
length j, supp(v) must contain an all-zero vector of length j.
On the other hand, Corollary 3.6 implies that j zeros in the

"The word “support” is often used to denote the set of positions
of nonzero components in a vector, but we use the word in slightly
different manner.
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0 0 s13 s14 -+ Sij+1 S22 0 Slw
0 5220 0 s24 -++ S2541 S2542 0 Sow
0 s32 s33 0 -+ s35401 S35402 0 S3w
0 sjo sj3 sjg - 0 sijo 0 Sjw

Fig.1 A Support matrix of a codeword whose weight is w.

all-zero vector must be canceled-out by other column vec-
tors in the support. Since a non-zero vector cancels at most
one zero in the all-zero vector (due to Lemma 3.2), supp(v)
must contain another j column vectors each of which can-
cels one of zeros in the all-zero vector. Therefore, without
loss of generality, the support matrix of v can be written as
in Fig. 1. (Note again that the order of column vectors has
no significance in a support matrix, and we have arranged
the columns so that the positions of zeros are clearly illus-
trated as in Fig. 1). In this paper, a support matrix that can
be written as in Fig. 1 is referred as a support matrix in a
normal form.

An interesting property of SFA-LDPC code is that, if
Ca(p, j) has a codeword with weight w, then the code also
has a codeword that has the same weight w and whose first
component is non-zero (Lemma 2 of [12]). Combining this
result with Corollary 3.7, we obtain the relation; Ca(p, j)
contains a codeword with weight w if and only if ¢(Ha(p, j))
has a submatrix “in the normal form” that has w column
vectors and satisfies the cancel-out condition.

Support matrices in the normal form have some more
useful properties. For example, any of components s;; with
1<i<j,2<k<j+1landi# k+1inFig. 1 cannot be
zero because of Lemma 3.2. We also remind that compo-
nents in a column vector of Fig. 1 is an arithmetic sequence,
and hence a column vector of Fig. 1 is uniquely determined
if two components in the vector are specified. These prop-
erties will be further investigated in the following sections
to discuss the minimum weights of individual SFA-LDPC
codes.

4. New Bounds on the Minimum Weights of SFA-
LDPC Codes

4.1 The Upper Bound of d(p,4)
4.1.1 Overview of the Discussion

In this section, we extend our preliminary results in [9] to
general SFA-LDPC codes C4(p,4), and show that d(p,4)
is 10 or less for any p > 7. The discussion in this sec-
tion is developed according to the following scenario: First,
we briefly introduce our experimental results concerning the
minimum weight codewords of C4(p, 4) for several choices
of p. By investigating the experimental results analytically,
we can discover a universal structure that can be found inde-
pendent from the prime number p. The structure is further
studied, and we derive conditions for H4(p, 4) to have a sup-
port matrix that has 10 columns and satisfies the cancel-out
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0 0 s13 514 515 S1.6 S1.7 S1.8 519 S1.10
s21 0 524 25 S26 827 S28 529 $2.10 A)
s31 832 0 s35 536 $37 $38 539 $3.10
sq,1 S42 543 0 Sag Sa7 S48 S49 S4,10

(=N eNe]

0 0 s13 514 515 515 S1.4 S1,3 S1,9 519
0 52,1 0 s24 $25 521 $27 S25 $27 $24 B)
0s31 1 0 s35 1 s35 538 $38 831
0s41 2 1 0 sa6 541 1 s46 2
0 0 -1-23s353s35 -2 ~—1 s19 S19
0 s21 0 =1 2535 s21 $27 2535 s27 -1 ©)
0251 1 0 s35 1 $35 838 838 2821
03s27 2 1 0 s46 35201 1 546 2

Fig.2 A normal form support matrix with weight 10.

condition. The discussion completes by showing that the de-
rived conditions always hold for Hs(p,4) with an arbitrary
p>T.

4.1.2  Support Matrices and Their Common Structure

By using a computer program, the authors have generated
minimum weight codewords of C4(p,4) for some prime
numbers p between 11 and 79. The algorithm for generat-
ing the codewords is not the subject of this paper, but it can
be found in [9], [10]. Among minimum weight codewords,
we restrict ourselves to those that have nonzero symbols at
the first positions, compute their support matrices, and re-
order the column vectors of the matrices so that the matrices
become the normal form. Since the minimum weights of
Ca(p,4) is ten for all primes between 11 and 79, the support
matrices in the normal form are thus written as in Fig. 2(A).

In general, one code C,(p,4) contains several mini-
mum weight codewords with nonzero symbols at the first
positions, and hence we have several support matrices in the
normal form for one code. We classified the support matri-
ces according to the cancel-out patterns of components in
the matrices, and found that an identical cancel-out pattern
appears in different choices of the prime number p. For ex-
ample, p(Hx(11,4)), ¢p(H4(13,4)) and ¢p(H4(17,4)) respec-
tively have the following support matrices;

[0 0 10 9 5 5 9 10 3 3
03 0 107 3 9 7 9 10
06 1 0 9 1 9 4 4 6/
09 2 1 010 9 1 10 2
0O 0 12 11 6 6 11 12 4 4
0 10 0 12 4 10 0 4 0 12
o 7 1 o0 2 1 2 9 9 71¢
0O 4 2 1 0 5 4 1 5 2
0 0 16 15 8 8 15 16 6 6
0 13 0 16 11 13 6 11 6 16
0 9 1 0 14 1 14 6 6 9
o 5 2 1 0 6 5 1 6 2

The components in the matrices vary in the above three ex-
amples, but we can see that the matrices satisfy the cancel-
out pattern depicted in Fig. 2(B). Remind the property that
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the components in a column vector of ¢(H4(p, j)) constitute
arithmetic sequences, and we can easily understood that the
common differences of the second, third, fourth and the fifth
columns of the matrix in Fig.2(B) are s, 1, 1 and —s35
(mod p), respectively. By using this property, the matrix in
Fig. 2(B) can be expressed as in Fig. 2(C), where the com-
ponents are under the modulus of p.

4.1.3 Conditions on the Matrix Components

Let d;, with k = 6, ..., 10 be common differences of the se-
quences in the k-th column vector of the matrix in Fig. 2(C).
From the relation of components in the the rightmost (the
tenth) column of the matrix, we have 2 = —1 + 2k;o mod p.
This implies that do must satisfy

2dip = 3 mod p. 2

The values of s 9 and 25, | are also represented by using d
as s19 = —1 —djp and 25,1 = —1 + d}p. Multiply both sides
of the equations by two and we have

251,9 = -2- 2]{10 = —5 mod D (3)
-2+ 2k10 =1 mod p- (4)

4S2’1

Now let us turn our attention to the sixth column of the ma-
trix. Because 1 —dg = 52,1, we have 4 —4dg = 45,1 = 1 and
hence

4dg =4 -1 =3 mod p. (@)
As for the eighth column, 1 = —1 + 3dg and thus
3dg=1+1=2mod p. (6)

We also have the relation 2535 = —1 + dg from the sequence
in the eighth column. Multiply both sides of the relation by
three,

6535 = =3+ 3d3 = —1 mod p. @)

In the seventh column, we have s35 = -2 + 2d;. Multiply
the relation by six, and

12d7 = 12 + 6535 = 11 mod p. ®)

Finally, consider the relation s, 7 = 519 +dy in the ninth col-
umn, s 7 = —2+dj7 in the seventh column and the conditions
(3) and (8), and we can show that

12dy = 17 mod p. 9)

Other unknown variables s,7, s33 and s4¢ are uniquely
determined once the above variables are determined, and
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hence relations (2) through (9) completely state the condi-
tion with which the matrix in Fig. 2(C) satisfies the cancel-
out condition.

Note that, if p is a prime number greater than seven,
then each of the above relation has a unique solution, since
the coefficient of the variable in the relation is relatively
prime to p. Consequently, we can determine a unique ma-
trix that is shown in the form of Fig. 2(C), and satisfies the
cancel-out condition. If we may use multiplicative inverses,
then the matrix in Fig. 2(C) is written as in Fig. 3 under the
above conditions. For the sake of readability, some compo-
nents in the matrix are written in a reduced form; for exam-
ple we write 7 - 47! instead of 1 + 3 - 47!, Finally, remind
the property that the check matrix Hy(p, j) has p? different
column vectors, and hence an arbitrary column vector which
is represented as an arithmetic sequence belongs to H(p, j)
as a column vector. Consequently, Hs(p, j) with p > 7 con-
tains the above described unique matrix.

Summarizing the above discussion, we have the fol-
lowing theorem.

Theorem 4.1: d(p,4) < 10 for any prime p with p > 7.

Combine this theorem with Yang’s lower-bound limit
d(p,4) > 10 for p > 7, and we can fully clarified the mini-
mum weights of SFA-LDPC codes with j = 4. The results,
together with already known results, are summarized in the
following corollary.

Corollary 4.2: d(p,4) = 8 for p = 5and 7, and d(p,4) =
10 for any prime p > 7.

4.2 The Upper Bound of d(p, 5)

The upper-bound limit of d(p,5) can be derived in almost
the same way as the case of d(p,4). The difference from
the j = 4 case is that we need to consider support matrices
with twelve column vectors instead of ten. We have col-
lected support matrices in a normal form, categorized the
cancel-out patterns and found a universal structure as in the
case j = 4. To avoid lengthy step-by-step derivation of the
conditions, we present only the final result in Fig. 4.

Theorem 4.3: d(p,5) < 12 for any prime p with p > 7.

0 0 -1-2-271 21 -2 -1 -5.271 —5.2-1
0 4! 0-1-31 41 —13. 127031 -13. 1270 1
02! 10-6"1 1 -6 371 371 271
03-4'2 1 0 7-41 3.471 1 7-47! 2

Fig.3  The support matrix in a normal form for j = 4.

0 0 -1-11-3'-3-2.31-2.371 3 _11.37!" -1 -8.371 —8.37!
06! 0-11-61-2 27 6! —4.371 2 —271_11.61-4.371!
0 3! 1 0o -1 -3 1 371 371 0 -1 0

02! 2116 0 -6! 11-61 2 4.371 271 g1 4.371
02-3713 11-371 1 0 8-37111.371 3 1 2.371 g.371

Fig.4  The support matrix in a normal form for j = 5.
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1.E+0(

1.E-01

1.E-02

1.E-03

1E-04}——

1.E-05
0

0.5 1 15 2 25 3 35 4 45 5

Fig.5  Block error rate.

|1.E-01

1.E-02

1.E-03

1.E-04

1.E-05

1.E-06

Together with Yang’s lower bound, we obtain following
corollary.

Corollary 4.4: 10 <d(p,5) < 12forp > 7.

5. Concluding Remarks

The minimum weights of SFA-LDPC codes are studied. The
problem has been investigated by Mittelholzer [8] and Yang
et al. [12], and this paper gives an answer to the problem
for the case j = 4, namely the minimum weight of C4(p, 4)
is exactly 10 for p > 7. For j = 5 case, we show that
the minimum weight of C4(p,5) is 12 or less, which sig-
nificantly improves the upper-bound limit of 20 shown by
Mittelholzer. We note that the approach considered in this
study is applicable to the case with j = 6 or more, but we
may face to difficulty in generating sufficient number of sup-
port matrices from that we can find a useful structure.

For the cases j = 4 and j = 5, the parameter p does not
affect the minimum weight of the code unless p < 7. If we
fix the parameter j and increase the value of the prime num-
ber p, then the code length of C4(p, j) increases while the
minimum weight of the code stays unchanged. Obviously
this degrades the error correcting capability of the code. On
the other hand, increasing p also increases the code rate and
thus the degradation of the error correcting capability is an
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Table2  Code parameters.

P N K rate d(p,4)
13 | 169 | 120 | 0.710 10
17 | 289 | 224 | 0.775 10
19 | 361 | 288 | 0.798 10
23 | 529 | 440 | 0.832 10
29 | 841 | 728 | 0.866 10
31 | 961 | 840 | 0.874 10

unavoidable expense for increasing p. For interested read-
ers, we present in Figs. 5 and 6 the block and bit error per-
formances of C4(p,4) for several p . The parameters of the
used codes are given in Table 2. The performance results
are obtained by the standard sum-product decoding algo-
rithm with twenty iterations at maximum. For low SNR,
shorter codes show better performance than longer codes,
which is a natural consequence of the observation on the
code length and the minimum weight. On the other hand,
short codes suffer for degradation of the performance for
high SNR. This result clearly illustrates that the minimum
distance is just one of parameters that affect the performance
of the code. We can see that longer code length gives signif-
icant contribution on the error correcting performance espe-
cially when use an iterative decoding.
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