
3306
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.12 DECEMBER 2003

LETTER

A Call-by-Need Recursive Algorithm for the LogMAP

Decoding of a Binary Linear Block Code

Toshiyuki ISHIDA†a), Student Member and Yuichi KAJI†, Regular Member

SUMMARY A new algorithm for the LogMAP decoding of
linear block codes is considered. The decoding complexity is eval-
uated analytically and by computer simulation. The proposed
algorithm is an improvement of the recursive LogMAP algorithm
proposed by the authors. The recursive LogMAP algorithm is
more efficient than the BCJR algorithm for low-rate codes, but
the complexity grows considerably large for high-rate codes. The
aim of the proposed algorithm is to solve the complexity explo-
sion of the recursive LogMAP algorithm for high-rate codes. The
proposed algorithm is more efficient than the BCJR algorithm for
well-known linear block codes.
key words: LogMAP decoding, linear block codes, BCJR algo-
rithm, trellis diagram, turbo codes

1. Introduction

This letter is to investigate an efficient algorithm for the
LogMAP decoding of linear block codes. The LogMAP
decoding plays essential roles in many applications of
the coding theory. A well-known approach for the
LogMAP decoding is to use a trellis-based BCJR al-
gorithm [1]. However, since linear block codes usually
have large and complicated trellis diagrams, the com-
plexity of the BCJR algorithm is especially large for
linear block codes.

In [5], the authors have proposed a recursive algo-
rithm for the LogMAP decoding. The recursive algo-
rithm is much more efficient than the BCJR algorithm
if the code has rather small code rate, while its com-
plexity is worse than the BCJR algorithm if the code
rate is not small. The authors analyzed the behavior of
the algorithm in detail, and found that a major part of
intermediate results, which are obtained in a recursive
computation, do not contribute at all to the computa-
tion of the upper-level of the recursion. If we can omit
the computation of such useless intermediate results,
then we can reduce the complexity of the algorithm
without affecting the decoding result.

In this letter, we consider to apply the “call-by-
need” approach to the recursive LogMAP algorithm,
where the “call-by-need” approach is known to be ef-
fective to reduce the decoding complexity of the recur-
sive maximum likelihood decoding algorithm [6]. We

Manuscript received April 28, 2003.
Final manuscript received August 14, 2003.

†The authors are with the Graduate School of Infor-
mation Science, Nara Institute of Science and Technology,
Ikoma-shi, 630-0192 Japan.
a)E-mail: toshi-i@is.aist-nara.ac.jp

present a modified recursive LogMAP algorithm, and
investigate a non-trivial upper-bound of the space com-
plexity. Unfortunately, the authors cannot present any
theoretical results on the time complexity of the algo-
rithm, because the behavior of the algorithm changes
drastically and complicatedly for its inputs (a received
sequence). Even though, simulation results show that
the proposed algorithm is more efficient than the BCJR
algorithm even if the code has rather high code rate.

2. Preliminary

Notations used in this letter are briefly reviewed. Refer
[2], [5] for more in detail. The followings are necessary
to consider recursive decoding algorithms. For an (n, k)
linear block code C, let px,y(C) = {(vx+1, . . . , vy) :
(v1, . . . , vn) ∈ C}. Also let Cx,y = {(vx+1, . . . , vy) :
(v1, . . . , vn) ∈ C, vj = 0 for j ≤ x and j > y}. It is
known that Cx,y is a linear subcode of px,y(C) [2], and
px,y(C) is divided into cosets of Cx,y. Let Lx,y be the
set of cosets of Cx,y in px,y(C). It is also known that,
for an integer z with x < z < y, any coset D ∈ Lx,y is
represented as

D =
2q⋃

i=1

(DL,i ◦ DR,i) (1)

where DL,1, . . . , DL,2q ∈ Lx,z, DR,1, . . . , DR,2q ∈ Lz,y,
“◦” denotes element-wise concatenation, and q =
k(Cx,y) − k(Cx,z) − k(Cz,y) with k(·) denoting the di-
mension [2].

Next we redefine the LogMAP decoding. For a re-
ceived sequence and given a priori values of symbols, a
bit metric mi(b) is defined for b ∈ {0, 1} and 1 ≤ i ≤ n.
Roughly speaking, bit metrics correspond to log γ(·) in
[4]. For a vector v = (v1, . . . , vy−x) ∈ px,y(C), define
and denote the metric of v as m(v) =

∑y−x
i=1 mx+i(vi).

Consider a coset D ∈ Lx,y. For 1 ≤ i ≤ y − x and
b ∈ {0, 1}, let D(i,b) be the set of vectors which be-
long to D and have the symbol b at the i-th symbol
position, and let v(i,b) be the vector which has the
largest metric in D(i,b). Arrange vectors in the set
{v(i,b) : 1 ≤ i ≤ y − x, b ∈ {0, 1}} in the decreasing
order of metrics, and we can obtain an ordered list of
vectors. Let CV L(D) denote this ordered list of vec-
tors, and call the list a covering vector list of D. In
this letter, we define that the LogMAP decoding for

LETTER
3307

a coset D is to compute CV L(D). Remark that the
code C is a special coset in L0,n and the above discus-
sion also applies to the code C. The LogMAP decoding
for C defined as above is essentially equivalent to the
conventional definition of the LogMAP decoding [4].

3. Proposed Algorithm

In the recursive LogMAP decoding considered in [5],
the LogMAP decoding for the code C is realized by
applying an algorithm for computing CV L(D) in a re-
cursive manner. The following lemma is essential for
the recursive computation.

Lemma 1: Let z be an integer with x < z < y. For
any coset D ∈ Lx,y and any vector v ∈ CV L(D), there
exist cosets DL ∈ Lx,z and DR ∈ Lz,y, and vectors
l ∈ CV L(DL) and r ∈ CV L(DR) such that v = l ◦ r.

✷

To follow a “call-by-need” approach, it is conve-
nient to consider a union of covering vector lists. Now
define

CV Lx,y =
⋃

D∈Lx,y

CV L(D),

where the union of lists is defined in the same manner as
the union of sets except that vectors in the resultant list
are arranged in the decreasing order of metrics. If y−x
is small, then CV Lx,y is efficiently computable directly
in a straight-forward manner. However, if y − x is not
small, then such a direct computation of CV Lx,y will
consume large complexity. Thus we use the following
corollary which is a counterpart of Lemma 1.

Corollary 2: For any v ∈ CV Lx,y, there exist l ∈
CV Lx,z and r ∈ CV Lz,y such that v = l ◦ r. ✷

In the following, we consider an algorithm which
finds a vector in CV Lx,y one-by-one. Assume that
the first h − 1 vectors in CV Lx,y have been correctly
computed as Λ = [v1, . . . , vh−1] where h ≥ 1. The
following Algorithm 3 computes the vector vh which
occupies the next position to vh−1 in CV Lx,y. Re-
mark that the metric of vh must be smaller than the
metrics of v1, · · · , vh−1 since vectors in CV Lx,y are in
the decreasing order of metrics. To make the descrip-
tion simpler, the i-th vectors in CV Lx,z and CV Lz,y

are denoted by li and ri, respectively. Vectors li
and ri are computable by applying Algorithm 3 to
the sections x–z and z–y, respectively. For each vm

with 1 ≤ m ≤ h − 1, let i(m) and j(m) be integers
such that vm = li(m) ◦ rj(m). Corollary 2 guarantees
that such integers i(m) and j(m) uniquely exist. For
pairs of integers, we write (i, j) ≥ (i′, j′) if i ≥ i′

and j ≥ j′. If (i, j) ≥ (i′, j′) and (i, j) 	= (i′, j′),
then (i, j) > (i′, j′). For the list Λ and a vector
u ∈ px,y(C), we write Λ|u for the list [v : v ∈
Λ, u and v belong to the same coset in Lx,y]. We say

that a vector u = (u1, . . . , uy−x) ∈ px,y(C) is covered
by Λ|u if and only if, for any i with 1 ≤ i ≤ y−x, there
exists v = (v1, . . . , vy−x) ∈ Λ|u such that ui = vi.

Algorithm 3:

1. Let S := N × N where N is the set of natural
numbers.

2. Let Sh := S \
⋃h−1

m=1{(i, j) : (i, j) < (i(m), j(m))}.
3. Let Γh be the set of all pairs of integers (i, j) ∈ Sh

which satisfy the following conditions;

a. li ◦ rj ∈ px,y(C),
b. li ◦ rj is not covered by Λ|li◦rj

, and
c. the above two conditions do not hold for any
(i′, j′) ∈ Sh with (i′, j′) < (i, j).

4. Find a pair (i, j) ∈ Γh which maximizes m(li ◦ rj)
among all pairs in Γh, and return li ◦ rj .

✷

The conditions 3(a) and 3(b) are easily possible by us-
ing the parity check matrices of px,y(C) and Cx,y, re-
spectively [6].

Theorem 4: The vector li ◦ rj returned by Algo-
rithm 3 is vh.
Proof. By Corollary 2, there are integers i(h) and j(h)
such that vh = li(h) ◦ rj(h). It suffices to show that

A. (i(h), j(h)) belongs to Sh after Step 2,
B. (i(h), j(h)) is included in Γh at Step 3, and
C. (i(h), j(h)) is selected at Step 4.

To show A, we use the property that CV Ls are ar-
ranged in the decreasing order of metrics. If there is m
such that 1 ≤ m ≤ h−1 and (i(h), j(h)) < (i(m), j(m)),
then the metric of vh = li(h) ◦ rj(h) is larger than that
of vm = li(m)◦rj(m). On the other hand, vm must have
the larger metric than vh since m < h, a contradiction.
Thus (i(h), j(h)) remains in Sh after Step 2.

To prove B, we need to show that i(h) and j(h)
satisfy the three conditions (a), (b) and (c) in Step 3,
where the condition (a) holds obviously. For the contra-
diction, assume that (b) does not hold, that is, assume
that Λ|li(h)◦rj(h) covers li(h) ◦ rj(h). In this case, for ev-
ery 1 ≤ i ≤ y − x, there exists vm ∈ Λ|li(h)◦rj(h) which
has the same symbol as vh at the i-th position. Since
vm has the larger metric than vh, this means that vh

cannot have the largest metric in D(i,b) where D ∈ Lx,y

is the coset to which vh belongs and b is the i-th sym-
bol of vh. Therefore, vh cannot belong to CV L(D) nor
CV Lx,y, a contradiction since we let vh be a vector in
CV Lx,y. A similar proof by contradiction is possible
to show that i(h) and j(h) pass the condition (c) in
Step 3. In total, (i(h), j(h)) is included in Γh.

We omit the discussion on the condition C since it
is also shown by a similar proof by contradiction. ✷

Vectors li and ri are computed by applying Algo-
rithm 3 to the sections x–z and z–y, respectively, when

3308
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.12 DECEMBER 2003

the vectors are needed for the first time. Vectors which
are not referenced are never computed. With this “call-
by-need” computation, we can avoid computing useless
vectors in CV Ls. By applying the algorithm for the
section 0–n iteratively, we can compute CV L0,n.

4. Decoding Complexity

The complexity of the proposed algorithm is consid-
ered. The algorithm has a recursive structure for com-
puting CV Lx,y. If y−x is small, then the computation
is performed directly, while if y − x is not small, then
the computation is performed recursively by dividing
the section x–y at a pivot z with x < z < y. The
complexity of the algorithm strongly depends on the
sectionalization, that is, the choice of the pivot z in the
recursive procedure, and the criteria for switching to
the direct computation.

We first consider the upper-bound limit of the
space complexity of the algorithm, and present an ac-
tual complexity obtained by computer simulation. The
upper-bound can be used to look for a good sectional-
ization which reduces the decoding complexity. For the
measure of the space complexity, we consider the num-
ber of vectors which must be memorized for a decoding.
We omit the proof due to the space limitation, but the
following is derived by using a similar discussion for
deriving the Grismer bound [3].

Lemma 5: Let D be a coset in Lx,y. If |Cx,y| = 1,
then |CV L(D)| = 1. Otherwise,

|CV L(D)| ≤ 2 + log2(dx,y/(2dx,y − (y − x)))
(if y − x < 2dx,y),

|CV L(D)| ≤ (y − x) + log2 dx,y − 2dx,y + 3
(otherwise).

where dx,y is the minimum distance of Cx,y. ✷

Let φx,y be the upper-bound limit on the space
complexity for computing CV Lx,y, and let bx,y be the
upper-bound limit of CV L(D) given by Lemma 5. To
make discussion simpler, assume that the direct com-
putation is employed only if y−x = 1, and the recursive
computation (Algorithm 3) is used if y − x > 1. Then,
we have

Table 1 The space complexity.

code proposed recursive LogMAP BCJR-based

Eb/N0 2dB 4dB (upper bound φ0,n) 4dB
RM(64,22) 16,314 18,787 24,103 20,249 649,720
RM(64,42) 37,853 38,417 72,246 52,748 649,720
RM(64,57) 4,047 3,855 4,733 3,821 5,272

exBCH(64,7)C 769 773 776 391 5,272
exBCH(64,10)C 2,333 2,375 2,415 2,185 37,080
exBCH(64,16)B 41,165 41,866 44,567 50,360 1,331,704
exBCH(64,24)B 36,701 38,542 61,375 59,869 1,876,472
exBCH(64,45)C 126,265 119,359 242,622 1,285,741 836,088
exBCH(64,51)B 57,806 55,930 90,357 604,419 243,192

φx,y = |px,y(C)| (if y − x = 1),
φx,y = |Lx,y| × bx,y + min

x<z<y
{φx,z + φz,y}

(otherwise).

By using the above expressions and a dynamic pro-
gramming technique, we can find a space-optimum sec-
tionalization which minimizes φx,y in the cubic order
to the section length y − x.

Table 1 is to compare the space complexities of
the proposed algorithm (the upper-bound and experi-
ment values obtained by computer simulation), recur-
sive LogMAP algorithm (by computer simulation) and
the BCJR algorithm (computed from the size of the
trellis). RM and exBCH stand for the Reed-Muller
and extended and permuted BCH codes [2], respec-
tively. For the computer simulation for the proposed
algorithm, the space-optimum sectionalization consid-
ered above is used, while for the recursive LogMAP
algorithm, a heuristically good sectionalization [5] is
used.

Next, we investigate the time complexity of the al-
gorithm. The measure of the time complexity is the
number of addition equivalent operations of metrics,
which is commonly used to measure the complexity of
the maximum likelihood decoding algorithms. Unfor-
tunately, we have not found a non-trivial bound on the
time complexity since the behavior of the algorithm
changes dynamically, but found by computer simula-
tion that the complexity is much smaller than that of
the BCJR algorithm. Table 2 shows the time complex-
ities of the considered LogMAP algorithms.

We can see that the proposed algorithm is more
efficient than the BCJR algorithm for all the codes pre-
sented in Tables 1 and 2. The decoding complexity of
the proposed algorithm changes according to inputs to
the algorithm. If the signal-to-noise ratio is large, then
one vector in px,y(C) (which is usually a part of the
transmitted vector) has very large metric compared to
other vectors, while other vectors have “nearly equally”
small metrics. Hence we can find the first vector in a
covering vector list efficiently, but we need much com-
plexity to find the second and later vectors in the list.
In total, the decoding complexity of the proposed algo-
rithm is not monotonical to the signal-to-noise ratios of
the channel. We considered block codes with length up

LETTER
3309

Table 2 The time complexity.

code proposed recursive LogMAP BCJR-based
Eb/N0 2dB 4dB 4dB

RM(64,22) 140,904 165,549 158,742 1,975,454
RM(64,42) 349,404 351,376 1,007,709 3,195,806
RM(64,57) 20,911 19,590 33,398 30,238

exBCH(64,07)C 1,852 1,873 667 13,774
exBCH(64,10)C 11,102 11,366 3,556 97,998
exBCH(64,16)B 382,992 392,470 170,035 3,673,246
exBCH(64,24)B 380,291 402,392 608,300 6,053,022
exBCH(64,45)C 1,428,151 1,334,720 5,500,698 4,414,366
exBCH(64,51)B 577,068 555,215 2,396,110 1,373,086

to 64 since block codes with the larger-scale than these
parameters are used quite seldom. Indeed we could not
find literatures which considers the LogMAP decoding
of linear block codes with length more than 64. The ta-
bles include results for codes with the practically largest
parameters. Due to the overhead for the call-by-need
computation, the complexity of the proposed algorithm
is not as good as that of the recursive LogMAP algo-
rithm for low-rate codes, though, the complexity of the
proposed algorithm is much more smaller than that of
the recursive LogMAP algorithm for medium- to high-
rate codes.

5. Conclusion

We investigated a call-by-need algorithm for the
LogMAP decoding of linear block codes. Due to the
overhead for the call-by-need computation, the algo-
rithm is not as efficient as the recursive LogMAP al-
gorithm for low-rate codes. However, the algorithm
succeeded to reduce the large complexity of the recur-
sive LogMAP algorithm for high-rate codes. This is
mainly thanks to the call-by-need computation which

works effectively to avoid useless computation.

References

[1] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal de-
coding of linear codes for minimizing symbol error rate,”
IEEE Trans. Inf. Theory, vol.20, no.2, pp.284–287, March
1974.

[2] T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, “A trellis-
based recursive maximum likelihood decoding algorithm for
linear codes,” IEEE Trans. Inf. Theory, vol.44, no.2, pp.714–
729, March 1998.

[3] J.H. Grismer, “A bound for error-correcting codes,” IBM J.
Res. Dev., vol.4, pp.532–542, 1960.

[4] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding
of binary block and convolutional codes,” IEEE Trans. Inf.
Theory, vol.42, no.2, pp.429–445, March 1996.

[5] Y. Kaji, R. Shibuya, T. Fujiwara, T. Kasami, and S. Lin,
“MAP and LogMAP decoding algorithms for linear block
codes using a code structure,” IEICE Trans. Fundamentals,
vol.E83-A, no.10, pp.1884–1890, Oct. 2000.

[6] Y. Kaji, T. Fujiwara, and T. Kasami, “An efficient call-by-
need algorithm for the maximum likelihood decoding of a
linear code,” Proc. 2000 Intl. Symp. on Inf. Theory and Its
Applications, pp.335–338, Honolulu, Hawaii, Nov. 2000.

