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Abstract 

 

  Back-pressure algorithm has been shown to be effective in reducing traffic 

congestion. However, available works on back-pressure based traffic control usually 

ignore the fact that vehicles need time to travel across roads, resulting in inconsistency 

between controllers’ viewpoint of traffic congestion situation and real traffic situation 

and thus misleading controllers. In this paper, we propose back-pressure based adaptive 

traffic signal control and vehicle routing with real-time control information update such 

that controllers always have consistent viewpoint of traffic congestion with real traffic 

situation and make wise signal control and vehicle routing decisions. As verified by 

simulations, our algorithm significantly reduces traffic congestion. For example, it 

reduces average vehicle traveling time by percentage ranging from 67% to 83% under 

high vehicle arrival rates when compared to other three algorithms. 
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1 Introduction 

1.1 Background 

Nowadays traffic congestion becomes a serious problem in urban transportation 

networks, which causes long travel time to drivers [1]. Traffic congestion brings 

adverse effects and harms to individuals and society. It not only affects the travel 

mood of individual, but also causes economic losses. It may also endanger personal 

safety and endanger the physical and mental health of residents. In addition, it also 

causes overall time loss to society. Air pollution, traffic accidents, fuel costs increase, 

and economic losses will affect the development of related industries such as 

automobiles and tourism, and restrict the development of the national economy.  

In metropolitan urban road networks, vehicles move according to traffic signals 

(red means one vehicle must stop, green means one vehicle may go and yellow means 

one vehicle should be prepared to stop). Traditionally, traffic flows are controlled by 

traffic lights that change signals in fixed cycles, fixed patterns. which are of low 

efficiency because they ignore real-time traffic situation. Furthermore, drivers in these 

networks can hardly have real-time global traffic information, to smartly select routes 

to avoid future traffic congestion. Surveys showed that traffic congestion can be 

alleviated by efficient traffic signal control and route selection methods [2]. Thus, it 

has been of high interest to study these problems over the years. 

Some adaptive traffic signal controllers have been implemented in metropolitan 

cities, such as SCOOT (Split Cycle Offset Optimization Technique) [3], SCATS 

(Sydney Coordinated Adaptive Traffic System) [4], ROHODES (Real-time 

Hierarchical Optimizing Distributed Effective System) [5], etc. These systems 

anticipate vehicle arrivals to adjust signal control parameters, like cycle length and 

phase, according to real-time traffic situation [6]. Although the feedback of these 

systems showed some performance improvement, most of the systems cannot provide 

any performance guarantee [14].  
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Control theory and game theory have also been applied to design traffic signal 

control algorithms [7-12] which are more reactive to real-time traffic and have 

stability guarantees. However, all of these approaches are centralized. It is difficult to 

use them in large urban road networks, where decentralized algorithm is required. 

Recently, researchers proposed decentralized solutions by applying back-pressure 

algorithm to adaptive traffic control [13-17]. Back-pressure routing is an algorithm 

originally for routing packets based on queue length differentials (also called pressure 

gradients) in wireless communication networks [22]. For back-pressure routing in 

road networks, the pressure of a road is defined as the number of vehicles at that road, 

then traffic flows from a high-pressure upstream area to a low-pressure downstream 

area. In other words, the vehicles flow to the roads with more remaining capacity in 

the network. Back-pressure was firstly applied in traffic signal control in [14]. They 

allocate the right-of-way for vehicles by controlling traffic signal based on 

backpressure, which was showed to bring obvious performance gains when compare 

to fixed cycle signal control. However, all of the above back-pressure based solutions 

do not provide dynamic route selection and some use fixed shortest path for vehicle 

routing, which may lead vehicles to congested areas.  

Dynamic vehicle routing problems have also been widely studied [25]. The earlier 

literature only allows vehicles with some minor adjustments of the prior routes 

[26-29]. With the development of technology, researchers started using Markov 

Decision Process to route vehicles dynamically without any prior route [30, 31]. 

Unfortunately, this method failed being applied in relatively large scale road networks 

which exist most in real-world. To tackle this limitation, an approach based on 

Approximate Dynamic Programming has been proposed [32, 33], yet all of the 

solutions above do not integrate with adaptive signal control. Recent researches 

considered adaptive signal control and dynamic vehicles routing [19, 21, 24]. 

However, they only focused on providing adaptive route guidance for individual 

vehicles, not coordinating different vehicles. With the development of self-driving 
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technology, it will be more efficient to coordinate different vehicles to reduce overall 

traffic congestion. 

Back-pressure algorithm has been used to jointly control traffic signals and vehicle 

routes in [18]. However, the algorithm proposed in [18] applies back-pressure 

algorithm directly to traffic control without considering the difference between road 

network and communication network: propagation time of a packet through 

communication link between two nodes is almost zero, while travel time of a vehicle 

across a road between two junctions cannot be ignored. According to their algorithm, 

at a junction, an empty road with 10 vehicles just entering it will be seen as more 

congested than a road with 5 vehicles already halting and waiting. The inconsistency 

between controller’s viewpoint of traffic congestion situation and real traffic situation 

misleads controllers in making traffic control decisions.  

1.2 Contributions 

In this paper, we extend the work [18] and originally propose novel shadow buffers so 

that shadow queues can update with real-time control information, such that 

controllers always have a consistent viewpoint of traffic congestion with real traffic 

situation and wisely do back-pressure based adaptive traffic signal control and vehicle 

routing. Moreover, we do traffic control by using adaptive rates of vehicles passing 

through junctions and shortest traveling time between two junctions, instead of 

constant rates of vehicles passing through junctions and shortest path between two 

junctions as used in [18]. Finally, we verify the effectiveness of our algorithm with a 

non-uniform road network while the network used in [18] is uniform. 

1.3 Organization 

The remainder of this paper is organized as follows. In Section 2, we introduce 

system model, concerning road network, traffic signal and traffic rules. In Section 3, 

we describe in details our back-pressure based adaptive traffic signal control and 

vehicle routing with real-time control information update algorithm. In Section 4, we 

implement our algorithm with simulator SUMO (Simulation of Urban MObility) [23, 
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35] using the road network of a real city Stockholm, and show the evaluation results.  

Section 5 gives the conclusion of the whole paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 5     

2 Road Network  

We model a road network as a directed graph 𝔾 = (𝕁, ℝ) , where 𝕁 =

{𝐽1, 𝐽2, 𝐽3, ⋯ , 𝐽𝑚𝑎𝑥} is the set of junctions and ℝ = {𝑅1, 𝑅2, 𝑅3, ⋯ , 𝑅𝑚𝑎𝑥} is the set of 

roads. Vehicles enter the road network from some origin entry roads and leave the 

road network from some destination exit roads. Vehicles with the same origin and 

destination belong to the same flow. Let 𝔽 = {𝑓1, 𝑓2, 𝑓3, ⋯ , 𝑓𝑚𝑎𝑥} be the set of all 

flows in the road network. For a vehicle of flow 𝑓 ∈ 𝔽, let 𝑜(𝑓), 𝑑(𝑓) be its origin 

entry road and destination exit road respectively. Let 𝕆 = {𝑜(𝑓), 𝑓 ∈ 𝔽} be the set 

of all origin roads and ⅅ = {𝑑(𝑓), 𝑓 ∈ 𝔽} be the set of all destinations. System time 

is slotted. Let 𝜆𝑓(𝑡) be the number of vehicles exogenously entering road network 

from origin 𝑜(𝑓) of flow 𝑓 at slot 𝑡. 

 

Fig. 1. Possible traffic movement from road 𝑅1 at a junction. 

2.1 Traffic Rules 

𝑅1 𝑅8 

𝑅5 𝑅4 

𝑅2 

𝑅3 𝑅6 

𝑅7 
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At a junction 𝐽𝑎 , vehicles can move from some upstream road 𝑅𝑖  to some 

downstream road 𝑅𝑗, which is called traffic movement (𝑅𝑖 , 𝑅𝑗). For example, Fig. 1 

illustrates all possible traffic movements from 𝑅1 at junction 𝐽𝑎: (𝑅1, 𝑅6), (𝑅1, 𝑅4),

(𝑅1, 𝑅2). Let 𝕄a be the set of all possible traffic movement at junction 𝐽𝑎 . A traffic 

phase 𝑝𝑖
𝑎 at junction 𝐽𝑎  is defined to be the set of all possible traffic movements 

that can occur simultaneously. Fig. 2 illustrates four typical traffic phases at a 

four-way junction. For example, traffic movements (𝑅3, 𝑅4), (𝑅3, 𝑅6), (𝑅7, 𝑅2),

(𝑅7, 𝑅8) belong to the same traffic phase. Let ℙa = {𝑝1
𝑎, 𝑝2

𝑎, ⋯ , 𝑝𝑚𝑎𝑥
𝑎 } be the set of 

all possible traffic phases at junction 𝐽𝑎 . Traffic signal control for a junction 𝐽𝑎  is 

executed by activating one selected phase 𝑝𝑖
𝑎 ∈ ℙa at the beginning of every time 

slot. Similarly, typical traffic phases at a three-way junction are shown in Fig. 3.  

 

 

Fig. 2.  Four typical phases at a four-way junction. 
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Fig. 3. Three typical phases at a three-way junction. 
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3 Back-Pressure Based Adaptive Traffic Signal Control 

and Vehicle Routing 

In this section, we describe in details our algorithm: back-pressure based adaptive 

traffic signal control and vehicle routing with real-time control information update.  

The basic idea of our algorithm is as follows. Each junction has a control agent. 

At each time slot, the control agent at each junction performs two tasks: 1) Firstly, 

it selects a traffic phase to control traffic signals of the junction. 2) Secondly, when 

a vehicle enters a road, it determines which direction to turn at the end of this road. 

Due to this decision is made just when a vehicle enters the road, for manual drivers 

they have enough time to react for instruction following. Note that for a specific 

vehicle, the sequence of downstream roads determined by junction agents forms its 

route. To aid agents to perform the two tasks, we need the following shadow 

network. 

3.1 Shadow Network with Real-Time Control Information Update 

   

Fig. 4. Illustration of shadow network with shadow buffers and shadow queues. 
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Based on road network, we construct a shadow network as shown in Fig. 4, which 

acts as a control network providing control information for agents to perform tasks. 

In the shadow network, each fictitious shadow vehicle is associated with one real 

vehicle in road network, each shadow buffer and shadow queue are associated with 

one real road.  

Specifically, the shadow network operates as follows. Once a real vehicle enters 

an origin entry road in road network, the corresponding junction agent generates a 

shadow vehicle and further generates another shadow vehicle with probability 

ϵ, 0 < ϵ < 1, and let them enter shadow network. Thus, if the vehicle arrival rate of 

flow 𝑓 ∈ 𝔽 is 𝜆𝑓 in real road network, then the shadow vehicle arrival rate of 

flow 𝑓 ∈ 𝔽 is (1 + 𝜖)𝜆𝑓 in shadow network. Here, ϵ is to guarantee network 

stability [18, 20]. 

If the exogenous vehicle enters road network from origin road 𝑅𝑖 at time slot 𝑡 

and is destined for destination 𝑑 ∈  ⅅ, then the junction agent let the 

corresponding generated shadow vehicle/vehicles enter shadow buffer �̃�𝑖
𝑑(𝑡) 

associated with destination 𝑑 and road 𝑅𝑖. After the real vehicle runs on road 

𝑅𝑖 for a while and meets either of the following two conditions, the junction agent 

let one shadow vehicle associated with the real vehicle leave shadow buffer �̃�𝑖
𝑑(𝑡) 

and join shadow queue �̃�𝑖
𝑑(𝑡) associated with destination 𝑑 and road 𝑅𝑖. One 

condition is that vehicle speed is less than 5 km/h, the other condition is that the 

distance between that vehicle and junction is less than 100 meters. 

When one real vehicle leaves one road 𝑅𝑖 ∈ ℝ and enters another road 𝑅𝑗 ∈ ℝ 

at slot 𝑡, the corresponding junction agent let one associated shadow vehicle leave 

some shadow queue �̃�𝑖
𝑑(𝑡) , 𝑑 ∈ ⅅ, of road 𝑅𝑖 and join some shadow buffer 

�̃�𝑗
𝑑(𝑡), 𝑑 ∈ ⅅ, of road 𝑅𝑗 as shown in Fig. 3 (Which shadow queue to leave and 

which shadow buffer to join are specified in Section 3-3.2).  After the real vehicle 

runs on road 𝑅𝑗 for a while and meets either of the above two conditions, the 
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junction agent let the associated shadow vehicle leave the shadow buffer �̃�𝑗
𝑑(𝑡) it 

joined before and enter the corresponding shadow queue �̃�𝑗
𝑑(𝑡) of road 𝑅𝑗. 

  Movement of fictitious shadow vehicles can be seen as exchange of control 

information in the shadow network, based on which junction agents perform traffic 

signal control and vehicle routing tasks. The process of updating shadow vehicle 

status in real-time, being in shadow buffer or being in shadow queue, mimics the 

behavior of real vehicles traveling on one road. Like real vehicles first entering 

road from one road end and then approaching the other road end, shadow vehicles 

first join shadow buffers and then join shadow queues. This is quite different from 

work [18], where a vehicle entering road 𝑅𝑗  immediately joins some shadow 

queue �̃�𝑗
𝑑(𝑡), ignoring that the vehicle needs time to travel across that road. This 

results in inconsistency between controllers’ viewpoint of traffic congestion and 

real traffic situation and misleads junction agents in making control decisions. 

3.2 Adaptive Traffic Signal Control and Vehicle Routing 

Algorithm 

Our back-pressure based traffic signal control and vehicle routing algorithm is 

decentralized. Every junction runs the following algorithm independently. At every 

time slot 𝑡, the agent of a junction 𝐽𝑎  first selects and activates a phase, then when 

a vehicle enters a road, determines which downstream of this road to join.  

  Our algorithm needs to define quantity 𝑠𝑖𝑗(𝑡), which is the number of vehicles 

that can move from road 𝑅i to road 𝑅𝑗 at slot 𝑡 given the assumption that traffic 

light for road 𝑅𝑖  changes to green. For example, if traffic light for road 𝑅𝑖 

changes to green at the beginning of slot 𝑡 and a vehicle can pass the stop line of 

road 𝑅𝑖 at the end of time slot 𝑡 with its current location and speed (it may 

accelerate), then we say the vehicle can move from road 𝑅𝑖 to road 𝑅𝑗 at slot 𝑡. 

The sum of all these vehicles is equal to 𝑠𝑖𝑗(𝑡). Thus, 𝑠𝑖𝑗(𝑡) is influenced by 
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factors like previous traffic light status, vehicle location, vehicle speed, 

acceleration rate, and thus reflects real-time rates of vehicles passing through a 

junction.   

3.2.1 Adaptive Traffic Signal Control 

Firstly, the junction agent computes back-pressure 𝑤𝑖𝑗
𝑑 (𝑡) for every destination 

d ∈ ⅅ and all possible traffic movement (𝑅𝑖 , 𝑅𝑗) ∈ 𝕄𝑎 as follows: 

𝑤𝑖𝑗
𝑑 (𝑡) = max{�̃�𝑖

𝑑(𝑡) − �̃�𝑗
𝑑(𝑡), 0}                      (1) 

And for every traffic movement (𝑅𝑖 , 𝑅𝑗), the agent identifies the destination 

𝑑𝑖𝑗
∗ (𝑡) that maximizes back-pressure 𝑤𝑖𝑗

𝑑 (𝑡): 

𝑑𝑖𝑗
∗ (𝑡) = arg max

𝑑
 𝑤𝑖𝑗

𝑑(𝑡)                              (2) 

The agent assigns the maximum back-pressure 𝑤𝑖𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) as the weight of traffic 

movement (𝑅𝑖 , 𝑅𝑗). Each traffic movement (𝑅𝑖 , 𝑅𝑗) is associated with one 𝑑𝑖𝑗
∗ (𝑡) 

at slot t. 

 Then, the agent selects the phase 𝑝𝑎∗(𝑡) ∈ ℙa of junction Ja that maximizes 

the following and activates the phase 𝑝𝑎∗(𝑡) for time slot t. 

𝑝𝑎∗(𝑡) = arg max
𝑝𝑙

𝑎∈ℙ𝑎

 ∑ 𝑤𝑖𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) 𝑠𝑖𝑗(𝑡)(𝑅𝑖,𝑅𝑗)∈𝑝𝑙
𝑎              (3) 

 Finally, real vehicles move under phase 𝑝𝑎∗(𝑡) and the agent of junction 𝐽𝑎  

updates shadow buffers and shadow queues as follows. For traffic movement 

(𝑅𝑖 , 𝑅𝑗) ∈ 𝑝𝑎∗(𝑡) associated with 𝑑𝑖𝑗
∗ (𝑡), if a real vehicle moves through junction 

𝐽𝑎  by leaving upstream road 𝑅𝑖 and entering downstream road 𝑅𝑗, then the agent 

let one associated shadow vehicle leave shadow queue �̃�𝑖

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) of upstream 

road 𝑅𝑖 and join shadow buffer �̃�𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) of downstream road 𝑅𝑗. After the real 
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vehicle runs on road 𝑅𝑗 for a while and meets either of the two conditions in 

Section III-A, the agent let the associated shadow vehicle leave shadow buffer 

�̃�𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) and join shadow queue �̃�𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡). Let �̃�𝑗
𝑑(𝑡) be the total number of 

shadow vehicles of destination 𝑑 ∈ ⅅ leaving shadow buffer �̃�𝑗
𝑑(𝑡) and joining 

shadow queue �̃�𝑗
𝑑(𝑡) at slot 𝑡.  

     Shadow buffer evolves as follows: 

�̃�𝑗
𝑑(𝑡 + 1) = �̃�𝑗

𝑑(𝑡) + ∑ 𝐼
{𝑑=𝑑𝑖𝑗

∗ (𝑡)}
𝑠𝑖�̃�(𝑡)𝑖:(𝑅𝑖,𝑅𝑗)∈𝕄𝑎 − �̃�𝑗

𝑑(𝑡) +

     ∑ 𝐼{𝑗=𝑜(𝑓),𝑑=𝑑(𝑓)}𝑓∈𝔽 𝜆�̃�(𝑡)                                                  (4) 

where 𝑠𝑖�̃�(𝑡) is the number of actual vehicles (also the number of associated 

vehicles) that move from road 𝑅𝑖 to road 𝑅𝑗 in slot 𝑡, and 𝐼{𝑥} is the indicator 

function: when statement 𝑥 is true, 𝐼{𝑥} equals to 1, otherwise 𝐼{𝑥} equals to 0. 

𝜆�̃�(𝑡) is the number of shadow vehicles entering road 𝑅𝑗 at slot 𝑡. From (4), we 

see that only if 𝑑 = 𝑑𝑖𝑗
∗ (𝑡), then  𝐼

{𝑑=𝑑𝑖𝑗
∗ (𝑡)}

= 1, i.e., 𝑠𝑖�̃�(𝑡) shadow vehicles 

only join the shadow buffer �̃�𝑗

𝑑𝑖𝑗
∗ (𝑡)

(𝑡) under phase 𝑝𝑎∗(𝑡). 

     Shadow queue evolves as follows: 

�̃�𝑖
𝑑(𝑡 + 1) = �̃�𝑖

𝑑(𝑡) − ∑ 𝐼
{𝑑=𝑑𝑖𝑗

∗ (𝑡)}
𝑠𝑖�̃�(𝑡)𝑗:(𝑅𝑖,𝑅𝑗)∈𝕄𝑎 + �̃�𝑖

𝑑(𝑡)           (5) 

3.2.2 Adaptive Vehicle Routing 

Let 𝜎𝑖𝑗
𝑑(𝑡) be the number of shadow vehicles of destinaiton 𝑑 moving from 

shadow queue �̃�𝑖
𝑑(𝑡) of road 𝑅𝑖 to shadow buffer �̃�𝑗

𝑑(𝑡) of road 𝑅𝑗 at slot 𝑡 

under the above adaptive traffic signal control algorithm. Let 𝜎𝑖𝑗
𝑑(𝑡) be the 

expected value of 𝜎𝑖𝑗
𝑑(𝑡) and 𝜎𝑖𝑗

𝑑(𝑡) be the estimated value of 𝜎𝑖𝑗
𝑑(𝑡). At each 

time slot t, agent of junction 𝐽𝑎  updates the value of 𝜎𝑖𝑗
𝑑(𝑡) for all 𝑑 ∈ⅅ and 

traffic movements (𝑅𝑖 , 𝑅𝑗) ∈ 𝕄𝑎, using exponential averaging: 
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�̂�𝑖𝑗
𝑑(𝑡) = (1 − 𝛽)𝜎𝑖𝑗

𝑑(t − 1) + 𝛽𝜎𝑖𝑗
 𝑑(t)                   (6) 

   where 0 < 𝛽 < 1.  

   Then, each agent updates routing probabilities 𝑃𝑖𝑗
𝑑(𝑡) based on 𝜎𝑖𝑗

𝑑(𝑡) as follows: 

𝑃𝑖𝑗
𝑑(𝑡) =

�̂�𝑖𝑗
𝑑 (t)

∑ �̂�𝑖ℎ
𝑑 (t)ℎ:(𝑅𝑖,𝑅ℎ)∈𝕄a

                           (7) 

When a vehicle of destination 𝑑 enters road 𝑅𝑖 at slot t, it will turn to road 𝑅𝑗 

with routing probability 𝑃𝑖𝑗
𝑑(𝑡). 

  For example, if 𝑃16
𝑑 (𝑡) = 0.4, 𝑃14

𝑑 (𝑡) = 0.1, 𝑃12
𝑑 (𝑡) = 0.5, and a vehicle of 

destination 𝑑 enters road 𝑅1 in Fig.1, it will turn to road 𝑅6, 𝑅4 and 𝑅2 with 

probability 0.4, 0.1 and 0.5 respectively. 

3.2.3 Further Reducing Vehicle Traveling Time 

To encourage traffic flows to follow shorter route to destinations, we introduce a 

bias 𝐿𝑖
𝑑 term in our algorithm. Bias 𝐿𝑖

𝑑 is the shortest traveling time from road 𝑅𝑖 

to destination road 𝑑, which is calculated by running shortest path algorithm 

Floyd–Warshall algorithm on directed graph 𝔾, where road weight is calculated by 

first dividing the length of a road by its speed limit and then normalizing the result 

to be between 0 and 10. 

  Specifically, we add bias 𝐿𝑖
𝑑 in our algorithm as follows: 

𝑤𝑖𝑗
𝑑(𝑡) = max{�̃�𝑖

𝑑(𝑡) − �̃�𝑗
𝑑(𝑡) + 𝛼(𝐿𝑖

𝑑 − 𝐿𝑗
𝑑), 0}                 (8) 

where parameter 𝛼, 𝛼 > 0, indicates how much weight we put on encouraging 

traffic flows to follow the shortest traveling time route. A proper setting of 𝛼 leads 

to good algorithm performance and effect of 𝛼 will be examined by simulations.  

3.3 Time Complexity Assessment of our Algorithm 
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As introduced above, our algorithm is distributed at every junction, every single 

junction executes the algorithm as follow: 

Step 1: for all possible traffic of this junction, calculate shadow queue difference of 

each destination(𝑇(𝑛) = 𝑂(𝑛2)). 

Step 2: Choose the destination that maximizes the shadow queue difference as each 

traffic movement pressure(𝑇(𝑛) = 𝑂(𝑛)). 

Step 3: Multiply each traffic movement pressure by its corresponding number of 

vehicles that can move in a time slot, get a value as weight of each traffic 

movement. Then summation the movement weights of each phase, select the phase 

has max summation to activate(𝑇(𝑛) = 𝑂(𝑛)). 

 In summary, the time complexity of our algorithm is equal to 𝑂(𝑛2). 
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4 Simulations 

In this section, we do simulations to evaluate the performance of our algorithm and 

compare it to other algorithms as follows. 

• Fixed-cycle (FC) signal controller: Traffic flows are controlled by traffic lights 

that change traffic signals in fixed cycle, which is widely used in real world. 

Vehicles follow fixed shortest paths calculated by Dijkstra's algorithm in the road 

network. 

• Back-pressure based signal controller with shortest path routing (SP-BP): 

Back-pressure based traffic signal control considers real time traffic situation of 

each junction as proposed in [14]: at a junction 𝐽𝑎 , 𝑄𝑖𝑗  denotes the number of 

vehicles queued at road 𝑅𝑖 wait to leave for road 𝑅𝑗. Therefore, 𝑄𝑖(𝑡) = ∑ 𝑄𝑖𝑗𝑗  

is the number of vehicles waiting at road 𝑅𝑖. The traffic pressure of all the traffic 

movements (𝑅𝑗 , 𝑅𝑘) ∈ 𝕄a can be calculated as 𝑊𝑗𝑘(𝑡) = max {𝑄𝑗 − 𝑄𝑘 , 0}, then 

release traffic pressure defined as 𝑝𝑗(𝑡) = arg max
𝑝𝑗

𝑎∈ℙa

 ∑ 𝑊𝑗𝑘(𝑡) 𝑠𝑗𝑘(𝑡)(𝑅𝑗,𝑅𝑘)∈𝑝𝑗
𝑎 , 

here 𝑠𝑗𝑘(𝑡) is the number of vehicles that can move from road 𝑅𝑗 to road 𝑅𝑘 at 

slot 𝑡 given the assumption that traffic light for road 𝑅𝑗 changes to green. Same 

as our algorithm, 𝑠𝑗𝑘(𝑡) of the movement  (𝑅𝑗 , 𝑅𝑘) to junction  𝐽𝑎  varies from 

slot to slot influenced by factors like previous traffic light status, vehicle location, 

vehicle speed, acceleration rate. Traffic phase 𝑝𝑗(𝑡) for junction  𝐽𝑎  is activated 

that maximizes the pressure release. Vehicles follow fixed shortest paths 

calculated by Dijkstra's algorithm. 

• Back-pressure based adaptive traffic signal control and vehicle routing without 

real-time control information update (AR-BP) proposed in [18]. In order to 

evaluate our algorithm fairly. 𝑠𝑗𝑘(𝑡) in this method also changes from slot to slot 

which is different with literature [18]. 
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• Back-pressure based adaptive traffic signal control and vehicle routing with 

real-time control information update (ARD-BP) proposed in this paper. 

4.1 Simulation Setup 

We have implemented the above algorithms in an open source simulator SUMO 

(Simulation of Urban MObility) [23, 35].  

  Topology of a real city Stockholm road network is used for simulation that is 

outputted from OpenStreetMap, a collaborative project can create an editable map of 

the world [34, 36]. The road network consists of four-way junctions and three-way 

junctions as shown in Fig.5. Roads in this network are bi-directional and have 

different length ranging from 400 meters to 1500 meters and different speed limit 

ranging from 60 km/h and 120 km/h. Every road has different number of lanes and 

the shape of each junction is determined by the number of lanes of incoming roads as 

Fig. 6 and Fig. 7 shows. We generate vehicles of 6 traffic flows with origin and 

destination pairs {(𝑜1, 𝑑1), (𝑜2, 𝑑2), ⋯ , (𝑜6, 𝑑6)} as shown in Fig.5. Vehicle arrival 

rates are set to be the same for all pairs and vary from 0.1 vehicle/second to 0.7 

vehicles/second. System time slot is set to be of duration 15 seconds, parameter 𝛼 

of ARD-BP and AR-BP is set to be 2, both of which are proved to be a proper value 

in following simulation results. Shadow vehicle generating parameter 𝜀 is set to be 

0.02 and vehicle routing parameter 𝛽 is set to be 0.02.  

  We collect the following data: average number of vehicles in road network, 

number of arrived vehicles and vehicle traveling time. Vehicle traveling time is 

defined to be the interval from the time a vehicle enters road network to the time it 

exists road network.  

  We run simulations of algorithms FC and SP-BP for 7200 + 5000 = 12200 seconds 

(3.4 hours). We do not collect simulation data of vehicles that enter road network 

after 7200 seconds, because only 5000 seconds are left for simulation and these 

vehicles will make us underestimate average vehicle traveling time. We run 

simulations of algorithms AR-BP and ARD-BP for 6000 + 7200 + 5000 = 18200 
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seconds (5 hours). We do not collect simulation data of vehicles that enter road 

network for the first 6000 seconds, because algorithms AR-BP and ARD-BP need 

time to learn vehicle routing probabilities Pij
d(t) and reach a stable routing policy, 

the first 6000 seconds in simulations constitute a warmup stage. For the same reason 

as before, we do not collect simulation data of vehicles that enter road network after 

6000 + 7200 = 13200 seconds. From the collected vehicle data, we set the number of 

vehicles that left the network in simulation time as arrived vehicles. In data collecting 

period, we get the number of vehicles currently running within the scenario every 

second, then calculate an average as average number of vehicles in road network. 

 

Fig. 5. Road network of city Stockholm 
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Fig. 6. Two four-way intersection types depending on the number of lanes of incoming roads. 

 

        

Fig. 7. Two three-way intersection types depending on the number of lanes of incoming roads. 

4.2 Simulation Results and Analysis 

Simulation results about average vehicle traveling time are summarized in Fig. 8. 

From Fig. 8., we can see that our algorithm ARD-BP outperforms other algorithms 

and achieves the lowest average vehicle traveling time for almost all vehicle arrival 

rates. For example, it reduces average vehicle traveling time by percentage ranging 

from 67% to 83% under relatively high vehicle arrival rates when compared to other 
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three algorithms. It verifies the effectiveness our algorithm in reducing traffic 

congestion. Average vehicle traveling time under ARD-BP is slightly larger than that 

of SP-BP at low vehicle arrival rates. This is because under low vehicle arrival rates, 

traffic congestion is not a problem, better routing choices may be shortest paths.  

 

Fig. 8.   Average vehicle traveling time with increasing vehicle arrival rate under different algorithms. 

For AR-BP and ARD-BP, 𝛼 = 2. 

  Fig. 9 shows simulation results of average number of vehicles in network. This 

figure directly proves that the number of vehicles in road network under our 

algorithm is smaller than other algorithms at a same arrival rate, meaning less 

traffic congestion. Furthermore, in Fig. 9 the average number of vehicles in 

network of all the other algorithms stop growing at a lower arrival rates when 

compare to our algorithm, which means they do net allow vehicles enter to the 

network early. In other words, our algorithm improves the utilization of the road 

network and expands the network capacity. Fig. 10 shows that more vehicles can 

arrive at destinations under our algorithm ARD-BP, meaning that vehicles under 

other algorithms are blocked in road network. 
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Fig. 9.   Average number of vehicles in road network with increasing vehicle arrival rate. For AR-BP and 

ARD-BP, 𝛼 = 2. 

 

Fig. 10. Number of vehicles arriving at destinations with increasing vehicle arrival rate. For AR-BP and 

ARD-BP, 𝛼 = 2. 

  The system time of our algorithm is slotted, we run simulations to investigate the 

effect of time slot duration on vehicle travelling time. Simulation results are 

summarized in Fig. 11. Minimum average travelling time is achieved when time 

slot is set to 15 seconds. Thus, we choose 15 seconds to be the duration of system 

time slot. 
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Fig. 11. Average traveling time at different time slot duration. For AR-BP and ARD-BP, 𝛼 = 2, vehicle 

arrival rate is set to be 0.3 vehicle/second. 

Finally, we examine the effect of parameter α on ARD-BP performance. From 

Fig. 12, we can see that average traveling time under ARD-BP first decreases as α 

increases and then increases as α further increases. Clearly, there is an optimal 

value of α such that ARD-BP achieves the lowest average traveling time.  

 

Fig. 12. Effect of parameter 𝛼 on average traveling time under ARD-BP. Vehicle arrival rate is set to 

be 0.3 vehicle/hour. 
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  Finally, we evaluate the fairness of our algorithm. Fig.13 shows that most (93%)   

vehicles arrive at their destination within 900 seconds, which is less than twice the 

average traveling time (489 seconds). So, our algorithm is fair for most vehicles. 

 

Fig. 13. Histogram of number of vehicles of different travelling time. Vehicle arrival rate is set to be 0.3 

vehicle/second and the average traveling time is 489 seconds. 

  In summary, by introducing novel shadow buffers, shadow queues and real-time 

control information update, our adaptive traffic signal control and vehicle routing 

algorithm ARD-BP greatly improves road network utilization, reduces traffic 

congestion and thus vehicle traveling time. Our algorithm is superior to the one 

proposed in [18]. 
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5 Conclusion 

In this thesis, we proposed a back-pressure based adaptive traffic signal control and 

vehicle routing algorithm ARD-BP. Our algorithm considers the reality that vehicles 

need time to travel across roads and achieves consistency between controllers’ 

viewpoint of traffic congestion situation and real traffic situation by using novel 

mechanism of shadow buffers, shadow queues and real-time control information 

update. Our algorithm greatly reduces traffic congestion and vehicle traveling time as 

verified by simulations and is superior to other three algorithms.  

  As depicted in section 3, our algorithm contains two controls: traffic signal control 

and vehicle route selection. It is with high operability for self-driving vehicles to 

accept the execute the instruction. But for manual drivers they may not follow the 

route selection provided by the system. Thus, it is necessary to consider the situation 

when some vehicles will not follow the instructions. And for this situation how can the 

algorithm be improved is the future work of this research. 
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