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Abstract

This paper proposes a method to mine rules from
software engineering data repositories that contain
a number of quantitative attributes such as staff
months and SLOC. The proposed method extends
conventional association analysis methods to treat
guantitative variables in two ways. (1) the
distribution of a given quantitative variable is
described in the consequent part of a rule by its
mean value and standard deviation so that
conditions producing the distinctive distributions
can be discovered. To discover optimized conditions,
(2) quantitative values appearing in the antecedent
part of a rule are divided into contiguous fine-
grained partitions in preprocessing, then rules are
merged after mining so that adjacent partitions are
combined.

1. Introduction

Many software development companies collect
data from software projects (records of product size,
devel opment duration, staff-hours, numbers of bugs,
metrics for risk assessment, customer satisfaction,
and the like), with the goal of improving
productivity, meeting deadlines, and improving
quality in software development. Generadly,
companies collect and store such software
engineering data for use by production engineering
divisions, quality assurance divisions, project
management offices (PMOs), and other support
divisions. Companies may use this information for
purposes such as estimating developer effort,
predicting reliability, and determining a wide range
of development standards (such as bug density and
productivity). For such purposes, a number of
conventional analysis methods have been widely
researched, including cost modes [3] [11] [14],
reliability models [9], and orthogonal defect
classification [4].

This paper focuses on a new approach to
association analysis utilizing the software project
data described above. Researchers have used
association analysis [1] effectively in the past to
analyze point-of-sales (POS) data for retailers and
Website traffic logs, to discover association rules
hidden amongst the data [15]. There has also been
rescarch on software project data: through
association analysis, Amasaki e a [2] mined
preconditions for software projects to fal into
disorder (combinations of risk assessment values)
using the assessments of large numbers of risk
variables.

General association analysis methods and rules,
however, are not aways applicable to software
project data because they do not provide for scalar
values. The values in software project data generally
mix nomina measurements along with ordinal and
scalar measurements, and it is therefore not possible
to handle these values in a uniform fashion as-is.
Software project data contains a number of
guantitative measurements of particular interest so
we would like to extend the general association
analysis approach to take advantage of the scalar
values instead of simply reducing them to nominal
values. ldentifying relationships among these values
can lead to improved productivity, reduced bug
density, and process improvements, as well as
elimination of defect causes. Using their means and
variance can help to more finely tune process
improvements and cause identification. Finding a
rule that identifies situations associated with higher
bug density may make it possible to eliminate the
causes of these bugs by éiminating the situations
expressed by the rule. Similarly, finding rules
common to projects with great amounts of variance
in productivity may make it possible to reduce the
variance by eliminating the situations common to
therules.

This paper proposes a method for mining rules
appropriate for software project data by extending
conventional association analysis methods. To
handle staff-months, LOC, and other quantitative



variables, the proposed method extends association
rules to include quantitative variables in the
consequent parts of the rules. The proposed method
divides these variables into contiguous fine-grained
partitions for the antecedent parts of the rules. After
mining extended association rules, the method
merges rules by joining partitions next to each other.

In Section 2, below, we describe conventional
association analysis and the issues for applying
conventional association analysis to software project
data. In Section 3 we describe the proposed method.
Section 4 presents related research. Section 5
summarizes the findings and describes future topics.

2. Association Analysisand Its|ssues

2.1 Association Analysis

Researchers have used association analysis to
discover associations hidden amongst data in the
POS product-purchasing logs of retail stores [1],
Website traffic logs [15], proteins [10], and the like.
For example, in the case of POS logs, researchers
have mined rules about products purchased together,
such as “purchases product A A purchases product B
= purchases product C.” There are a number of
possible uses for the rule in this example the
retailer could place products A, B, and C near to
each other in the store so that customers can find
them easily; or, it could ensure revenues by setting
the prices of antecedent products A and B to make
up the discounts on the sale price of consegquent
product C.

Association analysisis defined as follows [1].

Let 1= {ly, Io, ..., I} beaset of binary attribute

values, called items. A set Ac 1 iscalled an item set.

Let a database D be a multi-set of I. Each Te D is
called a transaction. An association rule is denoted
by an expresson A= B, where B=1,(1<ks<m) ,
ANnB=¢

With data like POS logs, however, which have
huge numbers of items, it is not realistic to mine all
rules. it takes inordinate amounts of computer
processing time, and it is not feasible to interpret the
huge number of mined rules manualy. For this
reason, conditions are placed on rule mining, setting
minimum values for one or al of three key
indicators of rule importance (support, confidence,
and lift). Rules that are not likely to be important
are generally pruned.

Support:

Support is an indicator of rule frequency. It is
expressed as support(A=> B) , and
is support(A=> B)=a/n , where

a=[TepjAcTABCTY andn =T < D).
Confidence:

Confidence is the probability that consequent B will
follow antecedent A. It is  expressed
as confidence(A=>B) , and is confidencefl A= B)=a/b ,

where a is defined as in  Support
andb={TeD|ACT}.

Lift:
Lift is an indicator of the contribution antecedent A
makes to consequent C. It is expressed aslift(A= B) ,

and is liftf(A= B)=confidencq A= B)/c , Where
c={TeD|BcT}.

For example, assume that the number of projects,
n = 20, the number of projects that contains A is 10,
the number of projects that contains B is 8, and the
number of projects that contains both A and B is 6.
For A=>B, the support is 0.3 (6/20), the confidence
is 0.6 (6/10), and thelift is 1.5 (0.6/8/20).

2.2 Issues with Association Analysis for a
Softwar e Engineering Data Repository

This paper envisons collecting software
engineering data as the project progresses, and
assumes that attributes include values such as staff
effort and LOC as defined in the ISBSG repository
[8] and IPA SEC [7]. Table 1 shows sample project
data. In Table 1, row 1 is the attribute category, and
row 2 is the attribute name. Each of the rows 3 and
beyond corresponds to a single project. Many
attribute values are measured and logged for each
project. Note that all values in the table are made-up
examples. Although the number of variables per
project will differ depending on the organization
and projects in question, there will be severa
hundred or so. On the other hand, there will be
roughly from several tens to several thousands of
projects. A company rarely has more than 10,000
projects. As shown in Table 1, amajor characteristic
of software project data is the existence of such
nominal measurements as platform type, target
industry, and target process, such ordinal
measurements as performance requirements and
security, and such scalar measurements as source
lines of code (SLOC) and staff-hours (human costs).

Association analysis normally is applied to
qualitative variables (nominal or ordina
measurements); scalar measurements are generally
converted to ordinal  measurements  via
preprocessing. For example, it would be possible to
convert SLOC into an ordina measurement
consisting of three categories — high, medium, and
low — depending on its value, but the optimum
partition must be determined viatrial and error, and
it is a nontrivial task to discover the optimum
partition points for multiple variables.



Table 1. An example of softwar e development pr oject data
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Sometimes, the variables in the software project
data that most interest us in our anayss are
guantitative variables. The variables that interest us
are the ones that tie in directly to process
improvement and elimination of defect causes. Some
examples are productivity (ratio of LOC or FP to
staff-hours worked), bug density, bugs detected per
test case, and rate of outsourcing of the coding and
testing phases. If we can discover conditions (rules)
for changing values or distributions that have
undesired impact, we can create countermeasures to
the conditions. Below, we describe how the proposed
method handles quantitative variables (scalar
measurements) contained in the target data.

3. Extension of Association Rule

3.1 Preliminary Definitions

Each value in Table 1 is expressed as an
<attribute, value> par. Let projects be a
set P={P,P,..P} ,
and P ={<attr, p, > < attr,, p,, >,...,< attr,, p,, >}1<i<n) ,
where attry is the K" attribute. P; corresponds to the
value of the K" attribute. Further, let values of an
attribute be a set

and Vv, ={<attr, vy >,< attr V >,....< attr,V, , 5}

v eV (l<i<n) are ether quaitative variables
(nominal or ordinal measurements) or quantitative
variables (scalar measurement). Note that in the
case of quantitative variables/ordinal
measurements, v, <v,,, -

Using Table 1 as an example, the third row in the
table (theitem with project ID 06S101) is Py, and Py
= {<project ID, 06S101>, <dept. code, industrial
dept.1>, <development type, new development>,
<business area type, finance>,...}. attr;is project ID,
p11is “06S101,” and Vy, = {<effort (planned), 12>,
<effort (planned), 60>,...}, and vy 14is“12.”

3.2 Handling Quantitative Variables

To resolve the issue of applying association rules
to software project data described in Section 2, the
proposed method handles quantitative variables
using methods S1 and S2, as follows. Sl is an
extension of the association rules that uses statistics
of a quantitative variable (mean and standard
deviation) without conversion of the consequent part
B. S2 can be applied for one or more quantitative
variables in antecedent part A. S2 finds optimal
fine-grained partitions by logically ORing the pre-
determined partitions.
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Figure 1 Distributions of attribute value

[S1] Extension of consequent part

S1 uses the attribute, the mean value, and the
standard deviation of a quantitative variable in the
consequent part B to create an extended association

rule expressed asA = attry (u, o),

whereu =15 p, a<i<1), 0= [Tz (p, - @si <),

I=|AcH|.

The analyst specifies attr, for a rule mining.
Rules are mined by calculating the mean and
standard deviation of attr, in projects that meet
antecedent A. An example would be “<industry,
finance> = SLOC (84304, 163.565).”

We define the indicators below (lift of mean and
lift of standard deviation) by comparing the means
and standard deviations of all items (projects).

Lift of mean
The lift of mean is p divided by the mean of the k™
attribute of all projects.
lift of mean=—%—(@<i<n)

Z Pi

n

Lift of standard deviation
Similarly, lift of

(2

{Z(pik - u)?
n

For example, given a quantitative rule
“<development language, C> = productivity (2.0,
0.864),” if the mean productivity of al projects is
0.5, then the lift of mean is 2.0 / 0.5 = 4.0. The
higher this value, the greater the effect of the
antecedent is on the consequent in thisrule.

Figurel shows an example to explain lift of
standard deviation. Solid line (a) is distribution of
pi of al proects (1<i<n). Dotted line (b) is
distribution of pi of projects that meets antecedent
part A (Ac P). Lift of standard deviation isthe ratio
of o, too,. In this case, lift of standard deviation

standard

deviation= (1<i<n)

smaller than 1 (o,/0,<1) indicates that situations
expressed by the antecedent part A are drivers for
smaller deviation. Enhancement of situations
expressed by A may lead to smaller deviation of
values of K" attribute.

[S2] Partitioning and joining via conversion for
antecedent part
S2 is applied to the antecedents part A. Using
the method proposed by Srikant e a [13],
guantitative variables are divided into multiple
partitions that are converted into categories. It mines
association rules from pre-converted categories,
searches for rules in the obtained rule set that can
join partitions, and ORs them to join the converted
partitions. It is expected that the optimum
partitioning will be found by creating a sufficiently
large number of partitions. There are two
partitioning methods, as described below. Both
create d(d < n) partitions.
(1) For a given quantitative variable attr, divide viy
into d equal parts. Vi is a set partitioning the
elements of Vinto d parts, where
Vi ={< attr,, Vi >€Vk‘V|k2V1k+U(| —D) Av <(uy +ul)} (L<1<d) and
Vik ~Vik
T d
(2) Partition the values so that as close as possible to
an equal number of vixarein each interval.
Vikis a set partitioning the elements of Vinto d parts,
where
Vi ={< attn Vy_yyn >--<attn, v, >} (1<1<d)

n
d (=1
u =
n-Yu@<i<i-1
d-1
Quantitative variables are split into partitions Vi
and converted. The discrete values of the mined
rules meeting the following criteria are logically
ORed and joined, and the support and confidence
are recalcul ated.
Pairs in the mined rules meeting the following
criteria are found:
VeAA=B , VyywAA=Bls<l<d-1) ; and the

logical OR (v) isused tojoin Vixand V. 1y, like so:
Vik VW) A A =Bl <d -1)

Although the antecedents of rules are joined,
thelr consequents are not. This process continues
until no joinable rules are found. If two rules are
joined, the support, the lift of mean, and the lift of
standard deviation are recal culated as shown bel ow.
Support after joining
support((Vi, v Vi) A A=B)=
support(Vy A A”=> B)+support(V,y, A A= B)

(1 #1)



Table 3 Examples of Mined Rules

Rule

Support

Lift  of
mean

Lift of standard
deviation

R1

(customer = existing customer) A (target industria =
experienced) — ratio of outsourcing(mean: 0.368,
standard deviation: 0.113)

0.216

1.510

0.832

R2

(development type = new development) A (maximum
number of staffs = smallest (1) ) = ratio of outsourcing
(mean: 0.118, standard deviation: 0.0630)

0.216

0.482

0.463

R3

(customer = existing customer) A (use of commercial
packages = without using) A (proportion of staff
month(coding and unit testing phase) = large (5 v 6)) =
proportion of staff month (integration and system
testing)(mean: 0.210, standard deviation: 0.0352)

0.216

0.785

0.353

R4

(development type = new development) A (target
industrial = experienced) A (outsourcer = second or later
trading) A (ratio of outsourcing = large (5 v 6) ) =
proportion of staff month (integration and system
testing)(mean: 0.262, standard deviation: 0.150)

0.216

0.979
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Sl and S2 are not mutually exclusive methods. If the
target data has multiple quantitative variables, it is
possible to specify one quantitative variable as a
consequent to be applied by S1, and apply S2 to the
rest of the quantitative variables (appearing in the
antecedent). In other words, it is possible to do the
following: A v A, = attr, (1,0) .

Here, /uzzpilk +2 Pix
I +1,
_ 2 S 2
and G:‘/Z(phk )7+ S (P~ 4)
I +1,

where (1<i, <1,1<i, <1,) .
Note, however, that |, =|AcP|, 1, =|AcP].

Figure 2 shows the procedure for extended
association rule mining. The cylinders in the figure
represent the data, and the sguares represent
processing. The solid arrows in the figure represent
the flow of data, and the dotted arrows represent
operations by the analyst. Processing proceeds in the
following sequence: conversion, rule mining, and
partition joining.

The analyst specifies the quantitative variables to
use with S2, assigns a partition count d and partition
method, and executes the “conversion” procedure.
Conversion categorizes quantitative variables into
discrete data (converts them to ordina
measurements). The analyst then executes the “mine
rules’ procedure specifying which quantitative
variable to use with S1 and a minimum support
level. If the analyst has specified any quantitative
variables for S2, the procedure "partition joining"
merges rules with adjacent partitions. If the
procedure finds rules capable of joining partitions,
the rules are combined via a logical OR. When
joining, the support, lift of mean, and lift of
standard deviation of rules are re-cal cul ated.

4. Related Research

Fukuda et a [6] have proposed a method for
mining association rules including quantitative
variables as antecedents. This method is capable of
calculating for intervals, for example, given the
guantitative variable age, it is able to calculate the
values Xy, X, for which the rule “age interval [x1, X2]
= purchased given service A” has the highest



support. Reference [5] also extends this method so
that it can handle two quantitative variables.
Although these methods can only mine rules with
guantitative variables in the antecedent, they are one
solution to the issue of handling quantitative
variables in association-rule analysis. The present
research can also calculate the interval with higher
support as Fukuda e a do, by converting
guantitative variables into qualitative variables
(ordinal measurement), and joining rules via logical
ORs.

A number of case studies have reported
association-analysis methods for software project
actual data. Amasaki et al [2] evaluate risk items for
each devdopment phase from collected
guestionnaires, and conduct association analysis for
project-confusion factors (whether devel opment
budgets or deadline standards will be overrun), with
the goal of revealing the factors leading to disorder
in software-development projects. Their analysis
data, however, does not include quantitative
variables, and effective rules are only mined within
the scope of conventional association analysis.

Song e a [12] mine association rules from
defect data logged during development (type of
defect cause, correction effort, etc.) to predict defects
with a high likelihood of simultaneous occurrence
and predict defect-correction effort (staff-hours).
Although they convert correction effort, a
guantitative variable, into ordinal form, the discrete
partitions are hard-wired into four categories: 1 hour
or less, 1 hour to one day, one to three days, and
longer than three days. Applying S2 to Song et a's
data should enable more fine-grained categories to
be obtained. Additionally, method S1 could enable
access to new knowledge by mining rules with mean
correction effort and standard deviation in the
consequent.

5. Conclusions

This paper proposes a method to mine rules
from software engineering data repositories that
contain a number of quantitative attributes such as
staff months, LOC, defect density, test case density,
and outsourcing cost. The proposed method extends
conventional association analysis methods to treat
guantitative variables in two ways. Fird, the
proposed method extends association rules to
include a single specified quantitative variable's
mean value and sandard deviation in the
consequent part. Second, to treat other quantitative
variables, the proposed method divides quantitative
variables into contiguous fine-grained partitions
appearing in the antecedent in preprocessing.
Partitions next to each other are joined after rules
are mined.

Since consequent parts of mined rules show
distributions in the cause of antecedent parts,
finding a difference of distribution leads to quick
cause identifications, systematic process
improvements, better planning, and more precise
estimations. If a certain antecedent part increases
the mean value of the consequent undesirably,
eliminating the situation expressed in the antecedent
part will decrease the mean value of the consegquent
part, providing quick cause identification and
systematic process improvement. If a certain
antecedent part increases the standard deviation of
the consequent part, we can consider the variation
expressed in the antecedent during planning and
estimation in the project to provide better planning
and estimations that are more precise.

The proposed method can be applied to very
large software-project repositories including missing
data. Furthermore, the proposed method can be
applied to existing repositories. We are planning
further investigation on larger software project
repositories and other kinds of repository.
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