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Abstract 
 

This paper proposes a method to mine rules from 
software engineering data repositories that contain 
a number of quantitative attributes such as staff 
months and SLOC. The proposed method extends 
conventional association analysis methods to treat 
quantitative variables in two ways: (1) the 
distribution of a given quantitative variable is 
described in the consequent part of a rule by its 
mean value and standard deviation so that 
conditions producing the distinctive distributions 
can be discovered. To discover optimized conditions, 
(2) quantitative values appearing in the antecedent 
part of a rule are divided into contiguous fine-
grained partitions in preprocessing, then rules are 
merged after mining so that adjacent partitions are 
combined.  
 
1. Introduction 
 

Many software development companies collect 
data from software projects (records of product size, 
development duration, staff-hours, numbers of bugs, 
metrics for risk assessment, customer satisfaction, 
and the like), with the goal of improving 
productivity, meeting deadlines, and improving 
quality in software development. Generally, 
companies collect and store such software 
engineering data for use by production engineering 
divisions, quality assurance divisions, project 
management offices (PMOs), and other support 
divisions. Companies may use this information for 
purposes such as estimating developer effort, 
predicting reliability, and determining a wide range 
of development standards (such as bug density and 
productivity). For such purposes, a number of 
conventional analysis methods have been widely 
researched, including cost models [3] [11] [14], 
reliability models [9], and orthogonal defect 
classification [4]. 

This paper focuses on a new approach to 
association analysis utilizing the software project 
data described above. Researchers have used 
association analysis [1] effectively in the past to 
analyze point-of-sales (POS) data for retailers and 
Website traffic logs, to discover association rules 
hidden amongst the data [15]. There has also been 
research on software project data: through 
association analysis, Amasaki et al [2] mined 
preconditions for software projects to fall into 
disorder (combinations of risk assessment values) 
using the assessments of large numbers of risk 
variables. 

General association analysis methods and rules, 
however, are not always applicable to software 
project data because they do not provide for scalar 
values. The values in software project data generally 
mix nominal measurements along with ordinal and 
scalar measurements, and it is therefore not possible 
to handle these values in a uniform fashion as-is.  
Software project data contains a number of 
quantitative measurements of particular interest so 
we would like to extend the general association 
analysis approach to take advantage of the scalar 
values instead of simply reducing them to nominal 
values. Identifying relationships among these values 
can lead to improved productivity, reduced bug 
density, and process improvements, as well as 
elimination of defect causes. Using their means and 
variance can help to more finely tune process 
improvements and cause identification. Finding a 
rule that identifies situations associated with higher 
bug density may make it possible to eliminate the 
causes of these bugs by eliminating the situations 
expressed by the rule. Similarly, finding rules 
common to projects with great amounts of variance 
in productivity may make it possible to reduce the 
variance by eliminating the situations common to 
the rules. 

This paper proposes a method for mining rules 
appropriate for software project data by extending 
conventional association analysis methods. To 
handle staff-months, LOC, and other quantitative 
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variables, the proposed method extends association 
rules to include quantitative variables in the 
consequent parts of the rules. The proposed method 
divides these variables into contiguous fine-grained 
partitions for the antecedent parts of the rules. After 
mining extended association rules, the method 
merges rules by joining partitions next to each other. 

In Section 2, below, we describe conventional 
association analysis and the issues for applying 
conventional association analysis to software project 
data. In Section 3 we describe the proposed method. 
Section 4 presents related research. Section 5 
summarizes the findings and describes future topics. 
 
2. Association Analysis and Its Issues 
 
2.1 Association Analysis 

Researchers have used association analysis to 
discover associations hidden amongst data in the 
POS product-purchasing logs of retail stores [1], 
Website traffic logs [15], proteins [10], and the like. 
For example, in the case of POS logs, researchers 
have mined rules about products purchased together, 
such as “purchases product A ∧ purchases product B 
⇒ purchases product C.” There are a number of 
possible uses for the rule in this example: the 
retailer could place products A, B, and C near to 
each other in the store so that customers can find 
them easily; or, it could ensure revenues by setting 
the prices of antecedent products A and B to make 
up the discounts on the sale price of consequent 
product C. 

Association analysis is defined as follows [1]. 
Let I= {I1, I2, …, Im} be a set of binary attribute 

values, called items. A set IA ⊂  is called an item set. 
Let a database D be a multi-set of I. Each DT ∈  is 
called a transaction. An association rule is denoted 

by an expression BA ⇒ , where )1( mkIB k ≤≤= , 

φ=∩ BA  
With data like POS logs, however, which have 

huge numbers of items, it is not realistic to mine all 
rules: it takes inordinate amounts of computer 
processing time, and it is not feasible to interpret the 
huge number of mined rules manually. For this 
reason, conditions are placed on rule mining, setting 
minimum values for one or all of three key 
indicators of rule importance (support, confidence, 
and lift). Rules that are not likely to be important 
are generally pruned. 
Support: 
Support is an indicator of rule frequency. It is 
expressed as )( BAsupport ⇒  , and 

is naBAsupport /)( =⇒ , where 

}|{ TBTADTa ⊂∧⊂∈=  and }{ DTn ∈= . 

Confidence: 

Confidence is the probability that consequent B will 
follow antecedent A. It is expressed 
as )( BAconfidence ⇒ , and is baBAconfidence /)( =⇒ , 

where a is defined as in Support 
and }|{ TADTb ⊂∈= . 

Lift: 
Lift is an indicator of the contribution antecedent A 
makes to consequent C. It is expressed as )( BAlift ⇒ , 

and is cBAconfidenceBAlift /)()( ⇒=⇒ , where 

}|{ TBDTc ⊂∈= . 

For example, assume that the number of projects, 
n = 20, the number of projects that contains A is 10, 
the number of projects that contains B is 8, and the 
number of projects that contains both A and B is 6. 
For A=>B, the support is 0.3 (6/20), the confidence 
is 0.6 (6/10), and the lift is 1.5 (0.6/8/20). 

 
2.2 Issues with Association Analysis for a 
Software Engineering Data Repository 
 

This paper envisions collecting software 
engineering data as the project progresses, and 
assumes that attributes include values such as staff 
effort and LOC as defined in the ISBSG repository 
[8] and IPA SEC [7]. Table 1 shows sample project 
data. In Table 1, row 1 is the attribute category, and 
row 2 is the attribute name. Each of the rows 3 and 
beyond corresponds to a single project. Many 
attribute values are measured and logged for each 
project. Note that all values in the table are made-up 
examples. Although the number of variables per 
project will differ depending on the organization 
and projects in question, there will be several 
hundred or so. On the other hand, there will be 
roughly from several tens to several thousands of 
projects. A company rarely has more than 10,000 
projects. As shown in Table 1, a major characteristic 
of software project data is the existence of such 
nominal measurements as platform type, target 
industry, and target process, such ordinal 
measurements as performance requirements and 
security, and such scalar measurements as source 
lines of code (SLOC) and staff-hours (human costs). 

Association analysis normally is applied to 
qualitative variables (nominal or ordinal 
measurements); scalar measurements are generally 
converted to ordinal measurements via 
preprocessing. For example, it would be possible to 
convert SLOC into an ordinal measurement 
consisting of three categories – high, medium, and 
low – depending on its value, but the optimum 
partition must be determined via trial and error, and 
it is a nontrivial task to discover the optimum 
partition points for multiple variables. 
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Sometimes, the variables in the software project 
data that most interest us in our analysis are 
quantitative variables. The variables that interest us 
are the ones that tie in directly to process 
improvement and elimination of defect causes. Some 
examples are productivity (ratio of LOC or FP to 
staff-hours worked), bug density, bugs detected per 
test case, and rate of outsourcing of the coding and 
testing phases. If we can discover conditions (rules) 
for changing values or distributions that have 
undesired impact, we can create countermeasures to 
the conditions. Below, we describe how the proposed 
method handles quantitative variables (scalar 
measurements) contained in the target data. 

 
3. Extension of Association Rule 
 
3.1 Preliminary Definitions 
 

Each value in Table 1 is expressed as an 
<attribute, value> pair. Let projects be a 
set },...,,{ 21 nPPPP = , 

and )1}(,...,,,{ ,2,211 nipattrpattrpattrP immiii ≤≤><><><= , 

where attrk is the kth attribute. Pi corresponds to the 
value of the kth attribute. Further, let values of an 
attribute be a set },...,,{ 21 mVVVV = , 

and },...,,{ 2,1, >>> <<<= knkkkkkk k
vattrvattrvattrV . Here, 

)1( kkik niVv ≤≤∈ are either qualitative variables 

(nominal or ordinal measurements) or quantitative 
variables (scalar measurement). Note that in the 
case of quantitative variables/ordinal 
measurements, 1+< ikik vv .  

Using Table 1 as an example, the third row in the 
table (the item with project ID 06S101) is P1, and P1 

= {<project ID, 06S101>, <dept. code, industrial 
dept.1>, <development type, new development>, 
<business area type, finance>,…}. attr1 is project ID, 
p11 is “06S101,” and V14 = {<effort (planned), 12>, 
<effort (planned), 60>,…}, and v1 14 is “12.” 
 
3.2 Handling Quantitative Variables 
 

To resolve the issue of applying association rules 
to software project data described in Section 2, the 
proposed method handles quantitative variables 
using methods S1 and S2, as follows. S1 is an 
extension of the association rules that uses statistics 
of a quantitative variable (mean and standard 
deviation) without conversion of the consequent part 
B. S2 can be applied for one or more quantitative 
variables in antecedent part A. S2 finds optimal 
fine-grained partitions by logically ORing the pre-
determined partitions. 

Table 1. An example of software development project data 
Manageme

nt 
Attributes 

Project Attributes Architecture Requirements Size  

Pr
oj

ec
t I

D
 

D
ep

t. 
co

de
 

D
ev

el
op

m
e

nt
 T

yp
e 

B
us

in
es

s 
A

re
a 

T
yp

e 

A
pp

li
ca

ti
on

 
T

yp
e 

Pl
at

fo
rm

 

Jo
b 

D
at

ab
as

e 

C
ap

ab
il

it
y 

Se
cu

ri
ty

 

Po
rt

ab
il

it
y 

SL
O

C
 

(P
la

nn
ed

) 

SL
O

C
 

(R
ec

or
de

d)
 

E
ff

or
t 

(P
la

nn
ed

) 

E
ff

or
t 

(R
ec

or
de

d)
 … 

06
S1

01
 

In
du

st
ri

al
 

D
ep

t. 
1 

N
ew

 
D

ev
el

op
m

en
t  

Fi
na

nc
e 

C
us

to
m

er
 

m
an

ag
em

en
t 

W
in

do
w

s 

In
te

ra
ct

io
n 

D
B

2 

M
ed

iu
m

 

H
ig

h 

N
/A

 

10
00

0 

14
23

9 

12
 

st
af

f 
 

m
on

th
 

16
 

st
af

f 
m

on
th

 

… 

06
S2

01
 

In
du

st
ri

al
 

D
ep

t. 
2 

R
e 

D
ev

el
op

m
en

t 

R
et

ai
l 

O
rd

er
in

g 

U
N

IX
 

B
at

ch
 

O
ra

cl
e 

H
ig

h 

H
ig

h 

L
ow

 

28
00

0 

30
94

0 

60
 

st
af

f 
m

on
th

 

68
 

st
af

f 
m

on
th

 

… 

06
G

01
 

Pu
bl

ic
 

W
or

k 
D

ep
t. 

E
nh

an
ce

m
en

t 

G
ov

er
nm

en
t 

Pe
rs

on
ne

l 
af

fa
ir

s 

W
in

do
w

s 

In
te

ra
ct

io
n 

M
y 

SQ
L

 

M
ed

iu
m

 

H
ig

h 

M
ed

iu
m

 

80
00

 

79
00

 

12
 

st
af

f 
m

on
th

 

8 
st

af
f 

m
on

th
 … 

… … … … … … … … … … … … … … … … 

 



4 

 
[S1] Extension of consequent part 

S1 uses the attribute, the mean value, and the 
standard deviation of a quantitative variable in the 
consequent part B to create an extended association 

rule expressed as ),( σµkattrA ⇒ ,  

where )1(
1

lip
l ik ≤≤= ∑µ , )1()(

1 2 lip
l ik ≤≤∑ −= µσ , 

PAl ⊂= . 

The analyst specifies attrk for a rule mining. 
Rules are mined by calculating the mean and 
standard deviation of attrk in projects that meet 
antecedent A. An example would be “<industry, 
finance> ⇒ SLOC (84304，163.565).” 

We define the indicators below (lift of mean and 
lift of standard deviation) by comparing the means 
and standard deviations of all items (projects). 
Lift of mean 
The lift of mean is µ divided by the mean of the kth 
attribute of all projects. 

lift of mean )1( ni

n

pik

≤≤
∑

=
µ  

Lift of standard deviation 
Similarly, lift of standard 

deviation )1(
)( 2

ni

n

pik

≤≤
−

=
∑ µ

σ  

For example, given a quantitative rule 
“<development language, C> ⇒ productivity (2.0, 
0.864),” if the mean productivity of all projects is 
0.5, then the lift of mean is 2.0 / 0.5 = 4.0. The 
higher this value, the greater the effect of the 
antecedent is on the consequent in this rule. 

Figure1 shows an example to explain lift of 
standard deviation. Solid line (a) is distribution of 
pik of all projects ( ni ≤≤1 ). Dotted line (b) is 
distribution of pik of projects that meets antecedent 
part A ( PA ⊂ ). Lift of standard deviation is the ratio 
of 2σ  to 1σ . In this case, lift of standard deviation 

smaller than 1 ( 1/ 12 <σσ ) indicates that situations 
expressed by the antecedent part A are drivers for 
smaller deviation. Enhancement of situations 
expressed by A may lead to smaller deviation of 
values of kth attribute. 
 
[S2] Partitioning and joining via conversion for 
antecedent part 

S2 is applied to the antecedents part A. Using 
the method proposed by Srikant et al [13], 
quantitative variables are divided into multiple 
partitions that are converted into categories. It mines 
association rules from pre-converted categories, 
searches for rules in the obtained rule set that can 
join partitions, and ORs them to join the converted 
partitions. It is expected that the optimum 
partitioning will be found by creating a sufficiently 
large number of partitions. There are two 
partitioning methods, as described below. Both 
create )( ndd ≤  partitions.  
(1) For a given quantitative variable attrk, divide vik 
into d equal parts. Vlk is a set partitioning the 
elements of Vk into d parts, where 

)}())1(,{ 11 ulvvluvvVvattrV kikkikkikklk +<∧−+≥>∈<= )1( dl ≤≤ and 

d

vv
u

knk k
−

= 1 . 

(2) Partition the values so that as close as possible to 
an equal number of vik are in each interval.  
Vlk is a set partitioning the elements of Vk into d parts, 
where  

},,...,,{ 1)1( ><><= +⋅− ll lukulklk vattrvattrV )1( dl ≤≤

⎪
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=
=

∑
)1(
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Quantitative variables are split into partitions Vk 

and converted. The discrete values of the mined 
rules meeting the following criteria are logically 
ORed and joined, and the support and confidence 
are recalculated. 
Pairs in the mined rules meeting the following 
criteria are found: 

BAVlk ⇒′∧ ， )11()1( −≤≤⇒′∧+ dlBAV kl ; and the 

logical OR (∨) is used to join Vlk and V(l+1)k, like so: 
)11()( )1( −≤≤⇒′∧∨ + dlBAVV kllk  

Although the antecedents of rules are joined, 
their consequents are not. This process continues 
until no joinable rules are found. If two rules are 
joined, the support, the lift of mean, and the lift of 
standard deviation are recalculated as shown below. 
Support after joining 
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Figure 1 Distributions of attribute value  
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S1 and S2 are not mutually exclusive methods. If the 
target data has multiple quantitative variables, it is 
possible to specify one quantitative variable as a 
consequent to be applied by S1, and apply S2 to the 
rest of the quantitative variables (appearing in the 
antecedent). In other words, it is possible to do the 
following: ),(21 σµkattrAA ⇒∨ . 

Here, 
21

21

ll

pp kiki

+
+

=
∑ ∑

µ  

and 
21

22 )()(
21

ll

pp kiki

+
−+−

=
∑ ∑ µµ

σ   

where )1,1( 2211 lili ≤≤≤≤ .  

Note, however, that PAl ⊂= 11 ， PAl ⊂= 22 . 

 

 
3.3 Procedure 

Figure 2 shows the procedure for extended 
association rule mining. The cylinders in the figure 
represent the data, and the squares represent 
processing. The solid arrows in the figure represent 
the flow of data, and the dotted arrows represent 
operations by the analyst. Processing proceeds in the 
following sequence: conversion, rule mining, and 
partition joining.  

The analyst specifies the quantitative variables to 
use with S2, assigns a partition count d and partition 
method, and executes the “conversion” procedure. 
Conversion categorizes quantitative variables into 
discrete data (converts them to ordinal 
measurements). The analyst then executes the “mine 
rules” procedure specifying which quantitative 
variable to use with S1 and a minimum support 
level. If the analyst has specified any quantitative 
variables for S2, the procedure "partition joining" 
merges rules with adjacent partitions. If the 
procedure finds rules capable of joining partitions,  
the rules are combined via a logical OR. When 
joining, the support, lift of mean, and lift of 
standard deviation of rules are re-calculated. 
 
4. Related Research 

Fukuda et al [6] have proposed a method for 
mining association rules including quantitative 
variables as antecedents. This method is capable of 
calculating for intervals; for example, given the 
quantitative variable age, it is able to calculate the 
values x1, x2 for which the rule “age interval [x1, x2] 
⇒ purchased given service A” has the highest 

project data

conversion

converted data

rule mining

rules

partition merging

joined rules

Quantitative variables using S2
and Quantitative method and a 
partition count

Analyst

Interpreting

Quantitative 
Variable using S1

 

Table 3 Examples of Mined Rules 
 Rule Support Lift of 

mean 
Lift of standard 
deviation 

R1 (customer = existing customer) ∧ (target industrial = 
experienced) ⇒ ratio of outsourcing(mean: 0.368, 
standard deviation: 0.113) 

0.216 1.510 0.832 

R2 (development type = new development) ∧ (maximum 
number of staffs = smallest (1) ) ⇒ ratio of outsourcing 
(mean: 0.118, standard deviation: 0.0630) 

0.216 0.482 0.463 

R3 (customer = existing customer) ∧ (use of commercial 
packages = without using) ∧ (proportion of staff 
month(coding and unit testing phase) = large (5 ∨ 6)) ⇒ 
proportion of staff month (integration and system 
testing)(mean: 0.210, standard deviation: 0.0352） 

0.216 0.785 0.353 

R4 (development type = new development) ∧ (target 
industrial = experienced) ∧ (outsourcer = second or later 
trading) ∧ (ratio of outsourcing = large (5 ∨ 6) ) ⇒ 
proportion of staff month (integration and system 
testing)(mean: 0.262, standard deviation: 0.150) 

0.216 0.979 1.51 
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support. Reference [5] also extends this method so 
that it can handle two quantitative variables. 
Although these methods can only mine rules with 
quantitative variables in the antecedent, they are one 
solution to the issue of handling quantitative 
variables in association-rule analysis. The present 
research can also calculate the interval with higher 
support as Fukuda et al do, by converting 
quantitative variables into qualitative variables 
(ordinal measurement), and joining rules via logical 
ORs. 

A number of case studies have reported 
association-analysis methods for software project 
actual data. Amasaki et al [2] evaluate risk items for 
each development phase from collected 
questionnaires, and conduct association analysis for 
project-confusion factors (whether development 
budgets or deadline standards will be overrun), with 
the goal of revealing the factors leading to disorder 
in software-development projects. Their analysis 
data, however, does not include quantitative 
variables, and effective rules are only mined within 
the scope of conventional association analysis. 

Song et al [12] mine association rules from 
defect data logged during development (type of 
defect cause, correction effort, etc.) to predict defects 
with a high likelihood of simultaneous occurrence 
and predict defect-correction effort (staff-hours). 
Although they convert correction effort, a 
quantitative variable, into ordinal form, the discrete 
partitions are hard-wired into four categories: 1 hour 
or less, 1 hour to one day, one to three days, and 
longer than three days. Applying S2 to Song et al's 
data should enable more fine-grained categories to 
be obtained. Additionally, method S1 could enable 
access to new knowledge by mining rules with mean 
correction effort and standard deviation in the 
consequent.  

 
5. Conclusions 

This paper proposes a method to mine rules 
from software engineering data repositories that 
contain a number of quantitative attributes such as 
staff months, LOC, defect density, test case density, 
and outsourcing cost. The proposed method extends 
conventional association analysis methods to treat 
quantitative variables in two ways. First, the 
proposed method extends association rules to 
include a single specified quantitative variable’s 
mean value and standard deviation in the 
consequent part. Second, to treat other quantitative 
variables, the proposed method divides quantitative 
variables into contiguous fine-grained partitions 
appearing in the antecedent in preprocessing. 
Partitions next to each other are joined after rules 
are mined. 

Since consequent parts of mined rules show 
distributions in the cause of antecedent parts, 
finding a difference of distribution leads to quick 
cause identifications, systematic process 
improvements, better planning, and more precise 
estimations. If a certain antecedent part increases 
the mean value of the consequent undesirably, 
eliminating the situation expressed in the antecedent 
part will decrease the mean value of the consequent 
part, providing quick cause identification and 
systematic process improvement. If a certain 
antecedent part increases the standard deviation of 
the consequent part, we can consider the variation 
expressed in the antecedent during planning and 
estimation in the project to provide better planning 
and estimations that are more precise.  

The proposed method can be applied to very 
large software-project repositories including missing 
data. Furthermore, the proposed method can be 
applied to existing repositories. We are planning 
further investigation on larger software project 
repositories and other kinds of repository. 
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