Advanced Search
Japanese | English

naistar (NAIST Academic Repository) >
学術リポジトリ naistar / NAIST Academic Repository naistar >
国際会議発表論文 / Proceedings >
情報科学研究科 / Graduate School of Information Science >

Please use this identifier to cite or link to this item:

Title: Kernel-Based Nonlinear Independent Component Analysis for Underdetermined Blind Source Separation
Authors: Shigeki Miyabe
Biing-Hwang (Fred) Juang
Hiroshi Saruwatari
Kiyohiro Shikano
Keywords: Blind source separation
independent component analysis
reproducing kernel Hilbert space
underdetermined problem
Issue Date: Apr-2009
Publisher: IEEE
Start page: 1641
End page: 1644
Abstract: In this paper we propose a new unsupervised training method for nonlinear spatial filter using a new independent component analysis based on kernel infomax. The nonlinearity of the spatial filter used in this paper is equivalent to the integration of beamforming and spectral subtraction, and the whole structure is optimized by independent component analysis in the reproducing kernel Hilbert space. The optimized filter is shown to be capable of achieving better quality output than the conventional method based on time-frequency binary masking.
Description: ICASSP2009: IEEE International Conference on Acoustics, Speech, and Signal Processing, April 19-24, 2009, Taipei, Taiwan.
ISBN: 9781424423545
ISSN: 1520-6149
Rights: Copyright 2009 IEEE
Text Version: Publisher
Publisher DOI: 10.1109/ICASSP.2009.4959915
Appears in Collections:情報科学研究科 / Graduate School of Information Science

Files in This Item:

File SizeFormat
ICASSP_2009_1461.pdf605.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Copyright (c) 2007-2012 Nara Institute of Science and Technology All Rights Reserved.
DSpace Software Copyright © 2002-2010  Duraspace - Feedback