The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery (BAM) complex

Running title: Structure and function of BepA TPR domain

Yasushi Daimon1, Chigusa Iwama (Masui)1, Yoshiki Tanaka2, Takuya Shiota3, Takehiro Suzuki4, Ryoji Miyazaki1, Hiroto Sakurada2, Trevor Lithgow3, Naoshi Dohmae4, Hiroyuki Mori1, Tomoya Tsukazaki2,*, Shin-ichiro Narita5,*, Yoshinori Akiyama1,*

1Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; 2Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan; 3Biomedicine Discovery Institute and Department of Microbiology, Monash University, Victoria 3800, Australia; 4Biomolecular Characterization Unit, Center for Sustainable Resource Science, RIKEN, Saitama 351-0198, Japan; 5Faculty of Nutritional Sciences, University of Morioka, Iwate 020-0694, Japan

*For correspondence:
Yoshinori Akiyama, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan. Phone: +81-75-751-4040, E-mail: yakiyama@infront.kyoto-u.ac.jp
Shin-ichiro Narita, Faculty of Nutritional Sciences, University of Morioka, Iwate 020-0694, Japan, +81-19-688-5555, E-mail: snarita@morioka-u.ac.jp

Tomoya Tsukazaki, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara 630-0192, Japan, +81-74-372-5551, E-mail: ttsukazaki@mac.com

Keywords: peptidase family M48/ extracytoplasmic stress response/ σE pathway/ antibiotic resistance/ outer membrane
Summary

BepA (formerly YfgC) is an *Escherichia coli* periplasmic protein consisting of an N-terminal protease domain and a C-terminal tetratricopeptide repeat (TPR) domain. We have previously shown that BepA is a dual functional protein with chaperone-like and proteolytic activities involved in membrane assembly and proteolytic quality control of LptD, a major component of the outer membrane lipopolysaccharide translocon. Intriguingly, BepA can associate with the BAM complex: the β-barrel assembly machinery driving integration of β-barrel proteins into the outer membrane. However, the molecular mechanism of BepA function and its association with the BAM complex remains unclear. Here, we determined the crystal structure of the BepA TPR domain, which revealed the presence of two subdomains formed by four TPR motifs. Systematic site-directed *in vivo* photo-cross-linking was used to map the protein-protein interactions mediated by the BepA TPR domain, showing that this domain interacts both with a substrate and with the BAM complex. Mutational analysis indicated that these interactions are important for the BepA functions. These results suggest that the TPR domain plays critical roles in BepA functions through interactions both with substrates and with the BAM complex. Our findings provide insights into the mechanism of biogenesis and quality control of the outer membrane.

Introduction

Outer membrane proteins (OMPs) of Gram-negative bacteria play vital roles for the
function of the outer membrane (OM), which acts as a barrier to hazardous compounds including a variety of chemicals and antibiotics (Nikaido, 2003). OMPs of Gram-negative bacteria, mitochondria, and chloroplasts are generally integrated into the OM as β-barrel structures (Misra, 2012). Following their synthesis (Pugsley, 1993), the insertion of bacterial OMPs into the OM is promoted by the β-barrel assembly machinery (BAM) complex (Noinaj et al., 2017; Ricci & Silhavy, 2012). An essential component of this complex, BamA, has an OM-embedded β-barrel domain and periplasmic polypeptide transport-associated (POTRA) domains (Kim et al., 2007). These POTRA domains each have a conserved β1-α1-α2-β2-β3 architecture, and have been suggested to interact with substrate OMPs via the β-strand augmentation mechanism (Kim et al., 2007; Knowles et al., 2008). In Escherichia coli, BamA has five POTRA domains and is associated with four lipoprotein subunits, BamB, C, D and E (Kim et al., 2007; Malinverni et al., 2006; Onufryk et al., 2005; Ruiz et al., 2005; Sklar et al., 2007; Wu et al., 2005).

Lipopolysaccharide (LPS) is another major component of the OM that is important for the OM structure and function (Nikaido, 2003). LptD is an OMP essential for E. coli growth (Braun & Silhavy, 2002), and forms a stable complex with the lipoprotein LptE to function in translocation of LPS to the outer leaflet of the OM (Freinkman et al., 2011; Wu et al., 2006). Correctly folded LptD (LptDNC) that has been assembled into the OM possesses two pairs of non-consecutive (C31-C724 and C173-C725) disulfide bonds that connect the periplasmic and the β-barrel domains (Dong et al., 2014; Kadokura et al., 2004; Narita et al., 2013; Qiao et al., 2014; Ruiz et al., 2010). These two disulfide bonds are formed by isomerization of disulfide bonds between successive pairs of cysteine residues (C31-C173 and C724-C725), which is likely triggered by association with LptE.
We have studied the function of β-barrel assembly-enhancing protease A (BepA; formerly called YfgC), a periplasmic M48 family peptidase homolog, and found that this protein facilitates the disulfide bond isomerization of LptD (Narita et al., 2013). In the absence of BepA, OM assembly of LptD is retarded and an LptD assembly intermediate (LptDC) with the consecutive disulfide bonds (C31-C173 and C724-C725) is accumulated in the periplasm (Narita et al., 2013). Cells defective in the BepA function exhibit increased sensitivity to antibiotics such as erythromycin and rifampicin possibly due to compromised barrier functions of the OM (Narita et al., 2013). BepA is also involved in proteolytic quality control of LptD; when the maturation of LptD was impaired by the depletion of LptE, accumulated LptDC was degraded in a BepA-dependent manner (Narita et al., 2013). It has also been shown that misassembled BamA generated in ∆surA mutant cells undergoes BepA-dependent degradation (Narita et al., 2013). These previous results suggested that BepA possesses both chaperone-like function that promotes the assembly of LptD and proteolytic functions that eliminate misassembled OMPs, and plays a critical role in maintaining the quality of the OM (Narita et al., 2013; Soltes et al., 2017). However, it is unclear how BepA promotes the assembly and degradation of OMPs and how these chaperone-like and proteolytic capacities of BepA are differentially activated depending on the folding state of OMPs, including LptD.

Sequence predictions suggest that BepA may have a C-terminal tetratricopeptide repeat (TPR) domain (The UniProt Consortium, 2017). TPR domains, which generally act in protein-protein interactions, comprise 3 to 16 repeats of 34 amino acids (TPR motifs), forming two anti-parallel α-helices packed in tandem arrays (D’Andrea & Regan,
Diverse cellular processes are controlled by proteins with TPR domains, including transcription, cell cycle control, protein translocation and protein degradation (Allan & Ratajczak, 2011). While multiple TPR motifs are predicted in BepA, the regions assigned as a TPR motif differ depending on the prediction methods (The UniProt Consortium, 2017; Karpenahalli et al., 2007). In this study, we focused on determining the structure, function and protein-protein interactions mediated by the TPR domain of BepA to gain insights into the BepA function. The results of our systematic pBPA-mediated in vivo cross-linking and site-directed mutagenesis, informed by the crystal structure of the TPR domain presented here, explain how this domain plays an important role in BepA function through interaction with the BAM complex and substrate proteins.

Results

The TPR domain of BepA is required for its functionality

To examine whether the TPR domain is required for the BepA function, we constructed C-terminally truncated derivatives (Tr308-Tr472) by introducing an amber codon into several positions in the TPR domain (Fig. 1A). When expressed from a plasmid in ΔbepA cells, proteins of the expected sizes accumulated for Tr374 and Tr426 (Fig. 1A). Although expression of wild-type BepA suppressed phenotypes caused by the absence of BepA, that is, elevated erythromycin sensitivity and accumulation of LptDC, expression of BepA(Tr374) and BepA(Tr426) did not (Fig. 1B and Supporting Information Fig. S1A). In addition, whereas a protease active site motif mutant of BepA, BepA(E137Q),
dominant-negatively interfered with the functioning of the chromosomally-encoded wild-type protein, it lost the ability to cause dominant negative effects when C-terminally truncated (Fig. 1B and Supporting Information Fig. S1A). These results suggest that the TPR domain is important for BepA to function normally.

The BepA TPR domain consists of two subdomains formed by TPR modules

As a first step to understand the role of the TPR domain in the BepA function, we sought its structural information. Although the C-terminal region of BepA is predicted to contain several TPR motifs, it is difficult to predict the exact structure of the BepA TPR domain solely from the sequence information. We thus used X-ray crystallography to determine the structure of the BepA TPR domain (310–482) at 1.7 Å resolution with R_work = 16.8% and R_free = 19.9% (Fig. 2 and Table 1). The structure revealed that the BepA TPR domain is composed of ten α-helices (H1 to H10) arranged anti-parallel. Structural comparison using the Dali server (Holm & Laakso, 2016) showed that at least the N-terminal 3 helix-turn-helix regions (H1 to H6) of the BepA TPR domain appear to fit well with the TPR motifs of several other proteins such as the Candidatus Magnetobacterium bavaricum magnetosome-associated TPR-containing protein MamA (3vty_a: Zeytuni et al., 2012) and human O-linked N-acetylglucosamine transferase (4n3a_a:Lazarus et al., 2013). Analysis using the UniProt database (The UniProt Consortium, 2017) suggests that the H1/H2, H3/H4, H5/H6, and H8/H9 pairs are TPR motifs and H7 and H10 are non-TPR helices. In contrast, the TPRpred program (Karpenahalli et al., 2007) suggested that only the H3/H4 pair is not a TPR motif. The H3/H4 and H8/H9 pairs contain residues matching the TPR motif consensus at 6 and 7, respectively, of the 8 positions, whereas the H7/H8 and H9/H10 pairs contain only 3 consensus residues. We decided to
provisionally adopt the assignment by UniProt. Therefore, in this paper we refer to the
H1/H2, H3/H4, H5/H6, and H8/H9 pairs as TPR1 to 4 with the odd-numbered and
even-numbered helices called A and B helices, respectively. Helices 7 and 10 are referred
to as non-TPR helix 1 and 2 (nTH1 and nTH2) (Fig. 2A and B). A C-terminal non-TPR
helix, called a capping helix, is observed in many other TPR domains (Hirano et al.,
1990). The BepA TPR domain contains two subdomains. The N-terminal subdomain,
which is composed of TPR1-3 and nTH1, forms a pocket architecture as frequently
observed in other TPR domains. Its concave surface is negatively charged (Fig. 2B and
C). In the crystal structure, the pocket is empty, whereas several previous studies have
proven that similar pockets in TPR domains can be occupied by extended polypeptides
(Allan & Ratajczak, 2011; D’Andrea & Regan, 2003; Zeytuni & Zarivach, 2012). TPR4
of BepA forms, in combination with TPR3B, nTH1, and nTH2, a C-terminal subdomain
that has a small cavity that faces away from the pocket of the N-terminal subdomain.

The BepA TPR domain interacts with multiple BAM complex components

Because TPR domains are generally involved in protein-protein interactions, it seemed
possible that the BepA TPR domain also interacts with other proteins. Previous studies
showed that TPR domains interact with their partner proteins in several different
manners; some interact with the convex surface of a TPR domain whereas others interact
with the rims or the concave surfaces (Allan & Ratajczak, 2011; Zeytuni & Zarivach,
2012). We thus employed a systematic in vivo photo-cross-linking approach to identify
possible interacting partners in an unbiased manner (Chin et al., 2002; Chin & Schultz,
2002). This technique has been successfully applied to analysis of protein-protein
interactions in a variety of biological processes (Choi et al., 2014; Maklashina et al.,
Each codon for the 179 residues in the entire TPR domain (309 to 487) was changed to an amber codon by site-directed mutagenesis to allow suppressor tRNA-mediated incorporation of a nonnatural, photoreactive amino acid, p-benzoylphenylalanine (pBPA). ΔbepA cells expressing each of these pBPA-incorporated mutants were UV-irradiated to cause cross-linking with interacting proteins. SDS-PAGE and immunoblotting analysis of the whole cell proteins showed that many of the pBPA mutants apparently generated bands of larger sizes that were detected by anti-BepA antibody (Supporting Information Fig. S2). Among these pBPA mutants, 42 were picked up and examined further. We found that most of them generated bands of larger sizes in a UV-dependent manner, indicating that these bands represented crosslinked products (Fig. 3). A complementation assay indicated that these pBPA mutants, except BepA(N364pBPA), retained biological function because they restored erythromycin sensitivity of the ΔbepA strain (Supporting Information Fig. S3A, pBPA(+)). Note that mutants with an amber codon in the most C-terminal part complemented the ΔbepA mutation even in the absence of pBPA, suggesting that the C-terminal region after L477 is not essential for BepA function (Supporting Information Fig. S3A). From these results, we expected that some of the detected cross-linkings could reflect functional interactions of BepA with partner proteins.

We previously showed that BepA could be photo-cross-linked and chemically cross-linked to BamA (Narita et al., 2013). In addition, BepA was co-isolated with the BAM complex in pull-down experiments (Narita et al., 2013). These observations suggest that BepA interacts with the BAM complex. We thus examined whether the cross-linked products of the 42 TPR-pBPA mutants contained BamA, BamC, or BamD.
by immunoblotting with antibodies against the respective proteins. The results are
summarized as follows: (i) cross-linking to BamA was detected for BepA having pBPA
at A396, F404, Q428, or R480 (Supporting Information Fig. S4A); (ii) cross-linking to
BamC was detected for BepA having pBPA at S451, S455, or L459 (Fig. 4B and
Supporting Information Fig. S4B); and (iii) cross-linking to BamD was detected for
BepA having pBPA at N323, D444, S448, S452, Q464, Q478, or K482 (Supporting
Information Fig. S4C). We previously found that the efficiency of chemical cross-linking
to the BAM components was significantly increased when BepA carried a protease
active site motif mutation (E137Q) (Narita et al., 2013). Use of the BepA(pBPA)
proteins additionally having the E137Q mutation markedly increased the efficiencies of
cross-linking to BamA (Fig. 4A and Supporting Information Fig. S4D), and also enabled
the detection of cross-linking to BamA at several neighboring positions (N397, N400,
S461, and L462) (Fig. 4A). The E137Q mutation also increased the pBPA-mediated
cross-linking to BamD at N323 and S452, whereas it apparently decreased cross-linking
at some other positions (Q464, Q478, and K482) (Fig. 4C).

We further analyzed the BepA-BAM interaction by conducting cross-linking
experiments using BamA proteins having a pBPA substitution at several positions in the
POTRA domain. After UV-irradiation of cells, the BamA derivatives were purified via an
N-terminally-attached His$_6$-tag. Immunoblotting analysis with anti-BepA antibody
revealed that BamA having pBPA at E224 in the POTRA3 domain generated a
cross-linked adduct (Fig. 5A). Complementation assays suggested that the
BamA(E224pBPA) mutant retains functionality (Supporting Information Fig. S3B).
Importantly, E224 faces the inside of the periplasmic ring-like structure formed by the
BamA POTRA domains and the other BAM components (Fig. 5B). Taken together with
the results that the BepA TPR domain would directly interact with the BAM complex, it seems likely that the BepA TPR domain is inserted into the interior space of the periplasmic ring-like structure of the BAM complex (see Discussion and Fig. 9).

The BepA TPR domain is also involved in the interaction with LptD

The pBPA-mediated \textit{in vivo} photo-cross-linking approach enables detection of not only stable but also transient protein-protein interactions, such as those with substrates (Chin \textit{et al.}, 2002; Chin & Schultz, 2002). To identify the cross-linking partners of BepA, we selected 6 BepA derivatives having pBPA at N323, N364, F404, S455, K458, or S461 for which multiple and/or strong bands of cross-linked products were generated. After UV-irradiation, cells expressing a BepA(E137Q) derivative with a respective pBPA substitution were lysed and the BepA-derivatives were affinity-purified using a His\textsubscript{10}-tag C-terminally attached to BepA (Supporting Information Fig. S5). Liquid chromatography-mass spectrometry (nano LC-MS/MS) analysis of the purified cross-linked products identified several candidates for BepA interactors (Table 2). Consistent with the immunoblotting results (Fig. 4A and C), BamD was detected with a high score for BepA(N323pBPA), and BamA was detected with high scores for BepA(F404pBPA) and BepA(S461pBPA). Notably, LptD was also detected for BepA(N323pBPA) and BepA(F404pBPA), although the scores were relatively low. Cross-linking of LptD to BepA(N323pBPA) and BepA(F404pBPA) was confirmed by anti-LptD immunoblotting analysis of the purified cross-linked products (Fig. 6A and B). Cross-linking of LptD to BepA was also enhanced by the E137Q mutation of BepA (Fig. 6A and B). These results suggest that the TPR domain of BepA is involved in interaction with LptD as well. Whereas the BepA(N323pBPA)-BamD adduct was formed
independently of growth phase, the BepA(N323pBPA)-LptD adduct was detected in mid
to late log-phase cells, and not in overnight (~24 h) cultured cells (Fig. 6C).

In addition to the BAM components and LptD, three proteins (LoiP, OmpA, and
YdgA) were detected as possible cross-linking partners by mass spectrometry analysis
(Table 2). Among them, LoiP (YggG), an outer membrane lipoprotein homologous to
BepA, has been reported to interact with BepA (Lütticke et al., 2012).

Mapping of the cross-linked sites on the structure of the TPR domain

We mapped the positions of the residues cross-linked to the BAM components (Fig.
4D) and LptD (Fig. 6D) on the crystal structure of the BepA TPR domain that we had
determined.

The BamA-cross-linking sites lie along TPR3B helix, at the N-terminal portion of
TPR4A helix, and on the N- and C-terminal portions of nTH2 helix, all facing the cavity.
This is in contrast to the BamD cross-linking sites, which were mapped to the TPR4B
and nTH2 helices and located on the convex surface of the cavity. The BamC
cross-linking sites reside in a region encompassing the C-terminal portion of the TPR4B
helix and the following L5 loop region. These observations suggest that BepA mainly
interacts with the BAM complex at the C-terminal subdomain of the TPR domain that
forms a small “cavity”.

One (F404) of the two LptD-cross-linking sites was also mapped in the C-terminal
cavity-forming subdomain whereas the other (N323) is in the N-terminal subdomain that
forms a “pocket”; they are located in or near the loop regions on opposite sides. It may
thus be possible that both of the subdomains are involved in binding with LptD.
A single amino-acid substitution in the TPR domain affects the function of BepA

To investigate the role of the TPR domain-mediated interaction with other proteins in the physiological function of BepA, we selected several residues at which cross-linking to the BAM components and LptD was observed and carried out mutational analysis (Fig. 7). We first constructed Ala-substituted mutants for these residues. The accumulation levels of the respective mutant proteins expressed from a plasmid in the ΔbepA cells were largely comparable to the wild-type protein (Fig. 7A). The Ala substitution mutations except F404A did not affect the BepA function, as the ΔbepA cells individually expressing these mutants exhibited erythromycin resistance comparable to those expressing the wild-type protein (Fig. 7A and Supporting Information Fig. S1B). The apparent lack of phenotypes of these BepA variants could be either because BepA-partner interactions are mediated by contacts at multiple positions in a redundant manner or because the contacts at these sites provide a limited contribution to the BepA function. In contrast, the erythromycin resistance of cells expressing the F404A mutant was significantly lower than that of the cells expressing wild-type BepA (Fig. 7A and Supporting Information Fig. S1B). In addition, while the wild-type and the other mutant proteins suppressed the accumulation of LptD_C, an assembly intermediate of LptD, in the ΔbepA cells, the F404A mutant did not (Fig. 7A). To further examine the functional importance of F404, it was mutated to other amino acid residues with different side chain properties. The results showed that BepA remained functional only when F404 had been replaced by another aromatic residue (Y or W) (Fig. 7B and Supporting Information Fig. S1B). We concluded that the TPR domain plays a critical role in the function of BepA to maintain the OM integrity through promotion of LptD biogenesis.
F404 in the TPR domain of BepA is important for protein-protein interaction

We then examined the effects of F404 mutations on interaction of BepA with the BAM components and LptD. The F404G or F404Y mutation was introduced into BepA(Q428pBPA), BepA(L459pBPA), BepA(D444pBPA), and BepA(N323pBPA), which had each yielded a cross-linked product with BamA, BamC, BamD, and LptD, respectively. Cross-linking experiments with these “double” mutants showed that introduction of the F404G mutation, but not the F404Y mutation, greatly reduced the efficiency of their cross-linking to the respective partner proteins (Fig. 7C and Supporting Information Fig. S6).

BepA degrades LptD and BamA when their OM assembly is impaired under an LptE-depleted or a surA-deleted condition, respectively (Narita et al., 2013). We found that some LptD underwent degradation when His₁₀-tagged LptD (LptD_{His₁₀}) was overexpressed along with wild-type BepA in the ΔbepA cells (Fig. 8A). The observed degradation of LptD_{His₁₀} was dependent upon the proteolytic activity of BepA as no degradation product was detected without co-expression of BepA or with co-expression of proteolytically inactive BepA(E137Q), suggesting that some of overproduced LptD that had failed to form a complex with LptE was degraded by BepA. LptD degradation products also accumulated when BepA(F404Y) was co-expressed, but they accumulated in significantly reduced amounts with BepA(F404G) co-expression (Fig. 8A). Similarly, overexpression of wild-type BepA or BepA(F404Y), but not that of BepA(E137Q), in the ΔbepA ΔsurA cells, resulted in a decreased level of full-length BamA and concomitant accumulation of BamA degradation products. In contrast, expression of BepA(F404G) or BepA(F404D) exerted only marginal effects on BamA stability (Fig. 8B). These results suggest that F404 of BepA is an important residue, not only for
interactions with the BAM components and LptD in LptD biogenesis, but also for the
degradation of misassembled BamA and LptD.

We previously found that the C-terminally attached polyhistidine-tag of BepA is
cleaved within the tag sequence (Narita et al., 2013). As this cleavage was not observed
for the E137Q mutant, even upon co-expression of the proteolytically active BepA (Fig.
8C), the truncation seems to be a result of self-cleavage. We found that the F404G
mutation had little effect on the self-cleavage (Fig. 8D), although it significantly reduced
the degradation of misassembled BamA and LptD. These results suggest that the F404G
mutation would not inhibit the BepA’s intrinsic protease activity. It is thus likely that the
defective degradation of the substrate proteins (misassembled BamA and LptD) by
BepA(F404G) results from impaired interaction of BepA with these proteins.

Discussion

We have previously shown that the periplasmic protein BepA, an M48 family
peptidase homologue, is involved in biogenesis and quality control of LptD, the major
subunit of the outer membrane LPS translocon (Narita et al., 2013). We have also
demonstrated that BepA can be associated with the BAM complex that catalyzes OMP
assembly (Narita et al., 2013). However, it remained unclear how BepA achieves these
biological functions. Here we determined the structure of the isolated TPR domain and
conducted systematic in vivo photo-cross-linking and mutagenesis analyses targeted to
the TPR domain of BepA. Our results collectively elucidated the importance of the TPR
domain in BepA function.
Our previous results suggested that BepA interacts with components of the BAM complex (Narita et al., 2013). Here, we showed that the TPR domain of BepA was cross-linkable to these BAM components in addition to LptD, providing evidence that BepA directly interacts with these proteins through its TPR domain. We found that pBPA at F404 in the BepA TPR domain can be cross-linked either to BamA or LptD, and that alterations of this residue impaired the normal functioning of BepA, suggesting that the TPR mediated interaction with either or both of these proteins is important for the BepA functions.

Cross-link adducts with BAM components were more prominent than those with LptD. Moreover, cross-linking to LptD, but not to BamD, was growth phase-dependent, and not detected in cells in stationary phase (Fig. 6C). The observed BepA-LptD cross-linking may reflect transient interaction of BepA with a newly synthesized LptD as a substrate, whereas BepA-BamD cross-linking may result from a more stable association of BepA with the BAM complex.

In addition to the BAM components and LptD, LoiP, YdgA, and OmpA were detected as possible cross-linked partners (Table 2). LoiP, an OM-associated lipoprotein protease homologous to BepA, has previously been shown to interact with BepA (Lütticke et al., 2012). Although physiological function of LoiP is not known, absence of BepA weakens association of LoiP with the OM (Lütticke et al., 2012). Partial membrane localization of BepA (Narita et al., 2013) might at least partly be ascribed to its TPR domain-mediated interaction with LoiP. Physical or functional interaction of BepA with YdgA, a putative periplasmic protein with unknown function, and OmpA, one of the major OMPs, have not previously been reported. Because OmpA is a very abundant protein and its assembly is mediated by the BAM complex, the observed
cross-linking of BepA with OmpA might not reflect their direct interaction, but result from proximal localization of these proteins at the BAM complex. We also detected a number of cross-linked products that were not reactive with antibodies to the BAM components or LptD, raising the possibility that BepA interacts with additional proteins (Fig. 3, Table 2 and Supporting Information Fig. S2). Identification of these proteins, which might lead to the discovery of new substrates and/or co-operating cellular factors, also awaits future study. The increased efficiencies of cross-linking when BepA carried the E137Q mutation in the protease active site motif might suggest that the protease active site region also participates in protein-protein interactions or that the protease activity of BepA indirectly affects the interactions through proteolysis of some substrate proteins.

We determined the crystal structure of the isolated TPR domain, which revealed that it has four tandemly aligned TPR motifs. The tandemly aligned TPR motifs generally form a superhelix with a single groove (concave) as a whole (Zeytuni & Zarivach, 2012). In contrast, The TPR domain of BepA is composed of two palm-like structures with their grooves facing opposite sides (see Results). The sites for cross-linking to BamA, BamC and BamD were mostly mapped in the small palm region; the BamA cross-linking sites were located in the cavity whereas the BamC and BamD cross-linking sites were located on the convex surface with the exception of N323, a BamD cross-linking site that resides within the loop between TPR1A and 1B helices in the larger palm. In contrast, most of the sites in the larger palm at which cross-linking to unidentified proteins was observed were mapped in the convex surface formed by the B-helices and the inter-helix loop regions (Supporting Information Fig. S7). It is interesting that the many residues in the convex surfaces of the BepA TPR domains probably participate in interactions with other
proteins, whereas super-helix-forming canonical TPR domains usually interact with ligands via A helices forming concave surfaces (Blatch & Lässle, 1999; Scheufler et al., 2000). It is, however, possible that some proteins that eluded the pBPA-mediated cross-linking interact with BepA at the concave surface of the larger palm.

Crystal structures of subunits of the BAM complex and the holo-complex show that the periplasmic POTRA domains of BamA form a ring-like architecture with the other BAM components (Bakelar et al., 2016; Gu et al., 2016; Han et al., 2016). The periplasmic units appear to rotate with respect to the membrane-embedded barrel of BamA, to facilitate the insertion of substrate OMPs into the OM (Gu et al., 2016; Han et al., 2016). E224 of BamA is located in the POTRA3 domain and exposed to the interior of the periplasmic ring-like structure formed by the POTRA domains of BamA and the other BAM components. Our results that pBPA at E224 of BamA can be cross-linked to BepA suggest that BepA interacts with the BAM complex within the periplasmic ring-like structure. In addition, the smaller palm of the BepA TPR domain would interact with BamA, C and D (Fig. 4D). These appear to be achieved if we assume that the TPR domain of BepA can interact with the BAM complex by inserting into the interior of the ring-like structure. We manually docked the crystal structures of the BepA TPR domain and the BAM complex to construct a conceptual model of their association (Fig. 9A-C).

In this model, the smaller palm region of the BepA TPR comes close to POTRA1 and POTRA5 of BamA, a central region of BamD, and an N-terminal region of BamC, which fits well with the interactions between the BepA TPR and the individual BAM components that were suggested from the cross-linking results. However, E224 of BamA, which was cross-linked to BepA, is located distantly from the BepA TPR. Additionally, N323 of the BepA TPR, which was cross-linked to BamD, appears to be too far from
BamD to cross-link. The proposed structural flexibility of the BAM complex, including possible conformational changes in the BamA POTRA domains, might allow these residues to reach their respective cross-linking partners (Warner et al., 2017; Fleming et al., 2016; Iadanza et al., 2016). Alternatively, BepA might interact with the BAM complex in several different configurations. If this mode of association is correct, the large protease domain (~30 kDa) of BepA would not be able to be simultaneously inserted into the ring-like structure, without a large conformational change in the periplasmic domain of the BAM complex.

What role does BepA play in the BAM-dependent assembly of LptD into the OM? It is possible that BepA binds the assembly intermediate of LptD, LptDC, in the periplasm and targets it to the BAM complex in the OM (Fig. 10A) or that BepA first binds to the BAM complex where it accepts LptDC (Fig. 10B). In either case, BepA mediates productive transfer of LptD to the BAM complex to promote its efficient association with LptE and final assembly into the OM, although at present it cannot be ruled out that LptD interacts with the BAM complex before its association with BepA. When proper assembly of LptD is impaired, for example, due to reduced availability of LptE (Narita et al., 2013), LptD (LptDC) is retargeted for degradation, in which TPR-mediated interaction of BepA with the substrate is also required. Soltes et al. (2017) recently showed that BepA degrades a partially folded LptD variant (LptD4213) that is stalled at the BAM complex, which would mimic a late step assembly intermediate, but does not degrade LptD that has accumulated at an earlier step of assembly. These findings appear to fit more with the second model (Fig. 10B), although it would be also possible that BepA interacts with a substrate early on but degrade it after they have been targeted to the BAM complex.
Our results showed that pBPA at N323 of BepA is cross-linkable to both LptD and BamD and that F404 is important for the interaction of BepA with BamA and LptD, and for the maturation of LptD. These residues might act as switches to facilitate the transfer of LptD between BepA and the BAM complex during assembly. More detailed kinetic studies of LptD assembly and its interactions with BepA and the BAM complex (and also with other cellular factors such as periplasmic chaperones), as well as structural information on the BepA-BAM and BepA-LptD complexes will be needed to fully understand the roles of BepA in the biogenesis and quality control of LptD and other OMPs.

Experimental Procedures

Experimental Procedures

Bacterial strains and media

E. coli K12 strains and plasmids used in this study are listed in Supporting Information Table S1. Unless indicated otherwise, cells were grown in liquid or on solid L medium (containing 10 g l⁻¹ Bacto Tryptone, 5 g l⁻¹ yeast extract, and 5 g l⁻¹ NaCl; pH was adjusted to 7.2 using NaOH) or M9 medium without CaCl₂ supplemented with 20 µg ml⁻¹ of each of 19 amino acids other than methionine, 2 µg ml⁻¹ thiamine, and 0.2% maltose. Unless otherwise specified, ampicillin (50 or 100µg ml⁻¹), chloramphenicol (20 or 50 µg ml⁻¹), kanamycin (30 µg ml⁻¹), or spectinomycin (50 µg ml⁻¹) were added for selecting transformants and for growing plasmid-harboring strains.

Plasmids

Plasmids used in this study are also listed in Supporting Information Table S1.
Derivatives of pUC-bepA and pUC-bepA-his₁₀ encoding a mutant form of BepA were constructed by site-directed mutagenesis using pairs of complementary primers. Derivatives of pUC-bepA(E137Q) and pUC-bepA(E137Q)-his₁₀ encoding a double or triple mutant form of BepA(E137Q) were constructed similarly. pTnT-bamA was constructed as follows. A DNA fragment for the bamA gene with a 500 bp promoter region and a 40 bp terminator region was PCR-amplified using a pair of primers BglII BamA-f

(5'-GAAGATCTAATGGTAAAGCGATTGTTTGTTCGTTATTGAGCCGAAAG-3')

and Bam ASalI-r

(5'-CCGGTCGACTCATCGCTACACTACCACCACCTTCTTGTGGAGAACCAC-3')

from the genomic DNA of Escherichia coli MG1655. The amplified DNA fragment was digested with BglII and SalI and cloned into the BglII/SalI site of pTnT. pTnT-H6A2bamA encoding His₆BamA was constructed by site-directed mutagenesis of pTnT-bamA using a pair of primer Bam ANHis6A2-f

(5'-CACCCTATACGCGGTCTAGCCACCACCACCACCACCACGCGGCGGAAGGT TCCTGTAGGAA-3')

and Bam ANHis6A2-r

(5'-CTTCTACTAACCACCCCTTCCGCCGCTGTGGATGGTGTTGTTGGTTGGTCGTTGACACC GTATACGCGTG-3'). pTnT H6A2bamA derivative encoding an amber mutant form of BamA were constructed by site-directed mutagenesis using pairs of complementary primers. pTTQ-lptD-his₁₀ was constructed as follows. An lptD-his₁₀ fragment was PCR-amplified from the genome of MC4100 using a pair of primers, lptD-his-for

(5'-CGCGGGATCCCAACGTTACCGATGATGGAAC-3') and lptD-his-rev

(5'-CGCGAAGCTTTCAATGATGATGATGATGATGATGATGATGATGATGATGATGATGATGCAAAAGTGT

TTTGATACGCCAG-3'), digested with BamHI and HindIII, and cloned into the same
site of pTTQ18. pTWV-lptD-his subclone into the same site of pTWV228. For construction of the
fragment of pTTQ-lptD-his into the same site of pTWV228. For construction of the
pSTD-bepA plasmid and its derivatives, the EcoRI-HindIII bepA fragments of
pUC-bepA and its derivatives encoding a mutant BepA were subcloned into the same
sites of pSTD689. pNAS310 encoding the BepA TPR domain was constructed as follows.
DNA fragment encoding residue 310-482 of BepA was amplified by PCR from
pUC-bepA-his using a pair of primers, TPR310 (5'-CGGGATCCGCAGCACAA TATGGTCGTG-3') and TPR482r
(5'-CCGCTCGAGTTACTTAAAGCGTTCCTGCAGC-3'). The amplified DNA
fragment was digested with BamHI and XhoI and then cloned into the same sites of
pET-16b-TEV, which is a modified version of the pET-16b (Novagen) expression vector
in which the Factor Xa-cleavage site has been replaced by a tobacco etch virus (Tev)
protease cleavage site. pNAS310(L450M) encoding the L450M mutant form of BepA
were constructed by site-directed mutagenesis using pairs of complementary primers
from pNAS310.

Purification of Se-Met labeled BepA TPR domain

pNAS310(L450M), a pET-based plasmid expressing MG–H10–SSGENLYFQGS–
BepA310–482(L450M) was introduced into E. coli strain KRX cells (Promega). After
cultivation of cells at 37°C to an A600 of approximately 0.5 in salt medium (containing 19
amino acids, 25 µg ml–1 Se-Met, 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG),
and 50 µg ml–1 ampicillin (Tsukazaki et al., 2006), the protein expression was induced
with 0.2% rhamnose at 17°C for 16 h. The cells were harvested by centrifugation (5,000
× g, 15 min), suspended in Buffer A [20 mM Tris-HCl (pH 7.0), 500 mM NaCl, 20 mM
imidazole (pH 7.0), 1 mM 2-mercaptoethanol (ME), 0.1 mM phenylmethanesulfonyl fluoride (PMSF) and 0.002% n-dodecyl-D-maltoside] and disrupted by sonication. After centrifugation (12,000 × g, 40 min), the supernatant was mixed with Ni-NTA Agarose (QIAGEN) equilibrated with Buffer A. The resin was washed with Buffer A and eluted with Buffer B [20 mM Tris-HCl (pH 7.0), 500 mM NaCl, 300 mM imidazole (pH 7.0), 1 mM ME, 0.1 mM PMSF and 0.002% n-dodecyl-D-maltoside]. The eluate was dialyzed against Buffer C [20 mM Tris-HCl (pH 7.0), 500 mM NaCl, 1 mM ME, 0.1 mM PMSF and 0.002% n-dodecyl-D-maltoside]. During dialysis, the N-terminal tag of the TPR domain was cleaved using TEV protease (1/20 ratio by weight) for 16 h. The solution containing the cleaved sample [Se-Met labeled GS–BepA310–482(L450M)] was mixed with Ni-NTA Agarose equilibrated with Buffer A. The flow-through sample was concentrated using an Amicon Ultra 3K filter (Millipore) and loaded on a Superdex 200 Increase column (GE Healthcare) equilibrated with Buffer C. The concentrations of protein and buffer were adjusted using an Amicon Ultra 3K filter to 10 mg ml⁻¹ BepA TPR, 20 mM Tris-HCl (pH 7.0), 260 mM NaCl, 1 mM ME, 0.1 mM PMSF, and 0.002% n-dodecyl-D-maltoside.

Crystallization, data collection, and structure determination

A volume of 0.1 µl of 20 mg ml⁻¹ purified Se-Met-labeled BepA TPR domain was mixed with 0.1 µl of reservoir solution [32% polyethylene glycol (PEG) 4000, 90 mM sodium citrate (pH 5.9), 180 mM ammonium acetate, 5 mM KH₂PO₄, and 2% PEG 8000]. The drop was incubated at 20°C according to the sitting drop vapor diffusion method against the reservoir solution additionally containing approximately 200 mM NaCl. The best rhombohedral shaped crystals grew to dimensions of 80 × 80 × 80 µm.
The structure of the BepA TPR domain was determined by multi-wavelength anomalous dispersion (MAD). The X-ray diffraction data were collected at Photon Factory beamline BL-1A with three-wavelength values of 0.9787 (peak), 0.9794 (edge), and 0.9900 Å (low-energy remote) and were processed using HKL2000 (HKL Research Inc.). Identification of initial Se sites and initial model building were accomplished using SHELXC/D/E (Sheldrick, 2010). The model was reformed and refined using Coot (Emsley & Cowtan, 2004) and PHENIX.refine (Afonine et al., 2012) for the peak dataset. To reduce the model bias and improve the phases, simulated annealing refinement was performed at an early stage of the model building, followed by several cycles of positional refinement combined with individual B-factor refinement. Finally, the structure of Se-Met-labeled BepA TPR domain (GS–BepA_{310–482}) was refined to R-work = 16.1% and R-free = 18.8% at 1.7 Å resolution. The refinement statistics are summarized in Table 1. All residues in the final models were found in the allowed regions of the Ramachandran plots calculated with MolProbity (Chen et al., 2010). The crystal contains one molecule in the asymmetric unit. The atomic coordinates and structure factors have been deposited in the Protein Data Bank, under the accession code 5XI8. The molecular graphics were illustrated with CueMol2 (http://www.cuemol.org/).

Photo-cross-linking of pBPA-containing BepA and BamA

SN56 cells carrying pEVOL-pBpF and a pUC-bepA-his_{10} derivative with an amber mutation were grown at 30°C to late log phase (at 0.6-0.7 units with TAITEC OD monitor) in L or M9 medium supplemented with 0.2% arabinose, 1 mM IPTG, 1 mM pBPA (Bachem) and appropriate antibiotics. Cultures were chilled on ice for 10 min and a 250 µl portion was UV-irradiated at 365 nm in a petri dish for 10 min by using a
B-100AP UV lamp (UV Products) at a distance of 4 cm. Proteins were then precipitated by the addition of an equal volume of 10% (w/v) trichloroacetic acid, solubilized in SDS sample buffer and subjected to SDS-PAGE and immunoblotting. For analysis of membrane fractions from UV-irradiated cells, 2 ml of culture was UV-irradiated. After washing and resuspending with 10 mM Tris-HCl (pH 8.1), cells were disrupted by sonication. Following the removal of unbroken cells by centrifugation at 10,000 × g for 5 min, membranes were collected by ultracentrifugation at 100,000 × g for 60 min and resuspended in 10 mM Tris-HCl (pH 8.1). Proteins were precipitated with trichloroacetic acid and subjected to SDS-PAGE and immunoblotting.

Cross-linking of pBPA-containing BamA was conducted as follows. Cells of the BamA depletion strain (Lehr et al., 2010), carrying pSup-BpaRS-6TRN and a pTnT-H6A2bamA(amber mutant) that expresses a His6 BamA derivative from the native bamA promoter, were grown at 37°C to stationary phase (at OD600=1.5-1.8) in L medium supplemented with 0.2% glucose, 1 mM pBPA and appropriate antibiotics. A 25-ml portion of the culture was UV-irradiated at 365 nm in a petri dish for 10 min at a distance of 3 cm. Cells were solubilized with 1% SDS buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 1% SDS] and then diluted five-fold with 0.5% Triton X-100 buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 0.5% Triton X-100]. His6-BamA and its cross-linked products were affinity purified by Ni-NTA agarose chromatography. They were eluted with Elution Buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 0.5% Triton X-100, 400 mM imidazole]. Proteins in the eluates were acid-precipitated and analyzed by SDS-PAGE and immunoblotting.

Purification of BepA cross-linked products
UV-irradiated cells from a 25-ml culture were harvested, washed with 10 mM Tris-HCl (pH 8.1) and disrupted by sonication in the same buffer. After the removal of unbroken cells by centrifugation at 10,000 × g for 5 min, membranes were collected by ultracentrifugation at 100,000 × g for 60 min. Membranes were solubilized with 1% SDS buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 1% SDS] and centrifuged at 10,000 × g for 5 min. Supernatants were 10-fold diluted with buffer containing 50 mM Tris-HCl (pH 8.1) and 150 mM NaCl, mixed with TALON metal affinity resin (Clontech) and rotated slowly for 2 h at room temperature. Resin was extensively washed with Binding Buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 0.1% SDS], and finally bound proteins were eluted with 500 µl of Elution Buffer [50 mM Tris-HCl (pH 8.1), 150 mM NaCl, 0.1% SDS, 81 mM EDTA]. Purified preparations of BepA cross-linked products were approximately 20-30-fold concentrated using Amicon Ultra 0.5 30K centrifugal filters (Millipore) at 14,000 × g for 15 min. Concentrated samples were mixed with an equal volume of 2× SDS-sample buffer with a final concentration of 10% (w/v) ME.

Mass spectrometry

Purified cross-linked products containing BepA were visualized by silver staining after SDS-PAGE. An excised silver-stained gel band was destained with destaining solution in the Silver Stain MS Kit (Wako Pure Chemical Industries) and then dried in vacuo. The band was incubated with 0.01 µg of N-tosyl-L-phenylalanine chloromethyl ketone (TPCK)-treated trypsin (Worthington Biochemical Corporation) in 10 mM Tris-HCl (pH 8.1) at 37°C for 12 h. An aliquot of the digest was analyzed by nano LC-MS/MS using a Q Exactive™ Hybrid Quadrupole-Orbitrap Mass Spectrometer (Thermo Fisher Scientific). The peptides were separated using a nano-spray column.
NTCC-360/75-3-105 (0.075 mm I.D. ×105 mm L, particle diameter 3 µm, Nikkyo Technos) at a flow rate of 300 nL/min. The mass spectrometer was operated in the positive-ion mode, and the spectra were acquired in a data-dependent TOP 10 MS/MS method. The MS/MS spectra were searched against the NCBInr 20151005 database (Taxonomy: Escherichia coli, 1436264 sequences) using an in-house MASCOT server (version: 2.5; Matrix Science).

Determination of minimum inhibitory concentration (MIC)

For determination of MIC of erythromycin, overnight cultures were diluted 10³-fold with L-medium and 5 µl were inoculated on L medium-based agar plates supplemented with 0, 1.56, 2.2, 3.13, 4.4, 6.25, 8.8, 12.5, 17.5, 25, 35, 50, and 70 µg ml⁻¹ erythromycin. The plates were incubated for 18-20 h at 30 °C.

Materials and other techniques

SDS-PAGE and immunoblotting were carried out essentially as described (Laemmli, 1970; Shimoike et al., 1995), unless otherwise specified. Penta-His HRP Conjugate (QIAGEN) was used to probe polyhistidine-tagged proteins. For visualization of proteins in immunoblotting, ECL or ECL Prime Western Blotting Detection Reagent (GE Healthcare) and detection was done using a lumino-image analyzer (LAS-4000mini; Fujifilm) or X-ray film. TAITEC mini photo 518R (TAITEC) was used to monitor cell density in the cross-linking assay of pBPA-containing BepA.

Acknowledgements
We thank Yohei Hizukuri and Eiji Ishii for stimulating discussion and Michiyo Sano and Akito Yoshimi for technical support. We are grateful to Shin-ichi Matsuyama, Hajime Tokuda, Osamu Nureki, Ingo B. Autenrieth, and Thomas J. Silhavy for bacterial strains, plasmids and antisera. This work was supported by JSPS KAKENHI Grant Numbers JP15H04350 (to Y.A.), JP15K07008 (to S.N.), and JP26291023 (to T.T.), MEXT KAKENHI Grant Numbers JP15H01532 (to Y.A.), JP26119007 (to T.T.), JP17H05669 (to Y.T.) and JP15H01537 (to Y.T.), and the research grants from Asahi Glass Foundation (to S.N.). This work was also supported by Platform for Drug Discovery, Informatics, and Structural Life Science funded by the Ministry of Education, Culture, Sports, Science and Technology, Japan (to T.T.) and Australian Research Council Discovery Project Grant DP160100227 (to T.L.). The authors declare that they have no conflicts of interest with the contents of this article.

Author Contributions

YD, HM, SN, YA, TS (T. Shiota), and TL conceived the idea and designed the experiments. YD, CI, YT, HS, TT, TS (T. Shiota), TL, TS (T. Suzuki), ND and RM performed experiments. YD, RM, TS (T. Shiota), TL, ND, TT, SN, and YA wrote the paper.

References
Afonine, P.V., R.W. Grosse-Kunstleve, N. Echols, J.J. Headd, N.W. Moriarty, M. Mustyakimov,

rearrangement triggered by translocon assembly controls lipopolysaccharide export.

Science 337: 1665-1668.

Lüt ticke, C., P. Hauske, U. Lewandrowski, A. Sickmann, M. Kaisera and M. Ehrmann (2012) *E.

Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in *Escherichia coli*. *Proc Natl Acad Sci U S A* **104**: 6400-6405.

Table 1. Data collection and refinement statistics for the BepA TPR domain

<table>
<thead>
<tr>
<th>Se-Met-labeled BepA<sub>310-482</sub></th>
<th>peak</th>
<th>edge</th>
<th>remote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>R32</td>
<td>R32</td>
<td>R32</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.9787</td>
<td>0.9794</td>
<td>0.9900</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>50 - 1.70 (1.76 - 1.70)</td>
<td>50 - 1.70 (1.73 - 1.70)</td>
<td>50 - 1.70 (1.73 - 1.70)</td>
</tr>
<tr>
<td>Unit cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>104.0, 104.0, 81.5</td>
<td>104.2, 104.2, 81.7</td>
<td>104.2, 104.2, 81.7</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90, 90, 120</td>
<td>90, 90, 120</td>
<td>90, 90, 120</td>
</tr>
<tr>
<td>Total reflections</td>
<td>1,833,668</td>
<td>947,226</td>
<td>941,228</td>
</tr>
<tr>
<td>Unique reflections</td>
<td>18,804 (1833)</td>
<td>18,967 (865)</td>
<td>18,975 (903)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>38.1 (24.8)</td>
<td>17.7 (5.1)</td>
<td>18.9 (9.7)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.8 (98.3)</td>
<td>99.7 (93.9)</td>
<td>99.9 (98.8)</td>
</tr>
<tr>
<td>Mean I/σ(I)</td>
<td>24.7 (2.39)</td>
<td>20.1 (0.64)</td>
<td>25.5 (1.33)</td>
</tr>
<tr>
<td>R-merge</td>
<td>0.273 (0.992)</td>
<td>0.351 (1.40)</td>
<td>0.11 (1.083)</td>
</tr>
<tr>
<td>R-pim</td>
<td>0.047 (0.188)</td>
<td>0.088 (0.576)</td>
<td>0.025 (0.334)</td>
</tr>
<tr>
<td>CC1/2</td>
<td>0.999 (0.856)</td>
<td>0.998 (0.293)</td>
<td>1.00 (0.657)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of reflections</td>
<td>18,802 (1,833)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-work / R-free</td>
<td>16.8 / 19.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(27.3 / 31.3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of non-hydrogen atoms</td>
<td>1,561</td>
<td></td>
<td></td>
</tr>
<tr>
<td>macromolecules</td>
<td>1,376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent</td>
<td>185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein residues</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.m.s. deviations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angles (°)</td>
<td>0.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramachandran</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>favored (%)</td>
<td>98.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>allowed (%)</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>outliers (%)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average B-factor</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>macromolecules</td>
<td>21.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>solvent</td>
<td>31.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Proteins identified by mass spectrometry analysis from the cross-linked adducts with BepA.

<table>
<thead>
<tr>
<th>Residue of BepA</th>
<th>XL-products* No.</th>
<th>Protein</th>
<th>Score</th>
<th>Peptide Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>N323</td>
<td>1</td>
<td>LptD</td>
<td>113</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamD</td>
<td>245</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>LptD</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamD</td>
<td>151</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YdgA</td>
<td>1,135</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BamD</td>
<td>172</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>364</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>LptD</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamD</td>
<td>2,167</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamA</td>
<td>113</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>260</td>
<td>5</td>
</tr>
<tr>
<td>N364</td>
<td>1</td>
<td>BepA(dimer)</td>
<td>9,784</td>
<td>227</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>5,545</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>OmpA</td>
<td>1,264</td>
<td>30</td>
</tr>
<tr>
<td>F404</td>
<td>1</td>
<td>BamA</td>
<td>8,550</td>
<td>197</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LptD</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamD</td>
<td>446</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>176</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>BamA</td>
<td>1,245</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LptD</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamD</td>
<td>179</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>622</td>
<td>15</td>
</tr>
<tr>
<td>S455</td>
<td>1</td>
<td>BamC</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamA</td>
<td>133</td>
<td>3</td>
</tr>
<tr>
<td>K458</td>
<td>1</td>
<td>LoiP</td>
<td>3,123</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamC</td>
<td>959</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BamA</td>
<td>126</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>1,381</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>BamA</td>
<td>1,172</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>384</td>
<td>11</td>
</tr>
<tr>
<td>S461</td>
<td>1</td>
<td>BamC</td>
<td>1,086</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OmpA</td>
<td>2,125</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>OmpA</td>
<td>334</td>
<td>9</td>
</tr>
</tbody>
</table>

*Numbers indicate the ones of the cross-linked (XL) products shown in Supporting Information Fig. S5
Figure Legends

Figure 1. The TPR domain is required for BepA function.

A. Accumulation of C-terminally truncated forms of BepA. ΔbepA cells carrying pUC18 (vector), pUC-bepA, or a derivative of pUC-bepA having an amber mutation at the indicated positions were grown at 30°C in L medium supplemented with 1 mM IPTG. Total cellular proteins were analyzed by SDS-PAGE and immunoblotting. A schematic representation of BepA domain organization is shown above. SP, signal peptide. The result shown is a representative of two independent experiments that was conducted using the same transformant (i.e. two technical replicates).

B. Erythromycin sensitivity and accumulation of LptD in ΔbepA or wild-type cells expressing the truncated forms of BepA. Total cellular proteins were analyzed by SDS-PAGE under reducing (+ME) or non-reducing (−ME) conditions and immunoblotting with anti-LptD (upper two panels) or anti-BepA (bottom panel) antibodies. LptDNC, LptDC, and LptDRED indicate LptD with non-consecutive disulfide bonds, LptD with consecutive disulfide bonds, and reduced LptD, respectively. BepA(FL) and BepA(Tr) indicate the full-length and truncated forms of BepA, respectively. The immunoblotting results shown are representatives of three technical replicates. The minimum inhibitory concentration (MIC) of erythromycin for each of the cells expressing BepA or its derivative were determined in the presence of 1 mM IPTG at 30°C as described in Materials and methods. The MIC assay result shown is a representative of two biological replicates. The MIC data of these replicates are shown in Supporting Information Fig. S1A, which shows that, although there are some fluctuations, difference in the MIC values are essentially reproducible and thus
significant. \(\Delta \text{bepA} \) cells carrying plasmid encoding the protease active site mutant (E137Q) of BepA exhibited increased sensitivity to erythromycin as compared with those carrying an empty plasmid (vector). This could be due to some deleterious effects of the BepA(E137Q) protein on cell viability.

Figure 2. Crystal Structure of the BepA TPR domain.
A. Amino acid sequence of the BepA TPR domain. The TPR modules and non-TPR helices (nTH) are indicated. The loop regions between the individual TPR modules are designated as L1 to L5, and the region C-terminal to nTH2 is designated as C.
B. Crystal structure of BepA TPR domain (ribbon model). \(\alpha \)-helices are colored as in A. The large palm with a pocket and the small palms with a cavity are indicated. Acidic residues in the pocket are highlighted in ball-and-stick form.
C. Surface representations colored according to electrostatic potential ranging from blue (+10 kT/e) to red (−10 kT/e).

Figure 3. pBPA-mediated cross-linking of the BepA TPR domain.
\(\Delta \text{bepA} \) cells carrying pEVOL-pBpF and pUC-bepA-his\(_{10}\) (WT) encoding BepA\(_{\text{His10}}\) or its derivative with an amber mutation at the indicated position were grown in L medium supplemented with 1 mM pBPA, 1 mM IPTG, and 0.2% arabinose, before being UV-irradiated for 0 (−) or 10 min (+). Total cellular proteins were analyzed by SDS-PAGE and immunoblotting with anti-BepA antibody. The results shown are representatives of two technical replicates. Bars over amino acid residue numbers are colored according to those in Fig. 2A.
Figure 4. Cross-linking of BepA with the BAM complex components.

A-C. Cross-linking of BepA with BamA, BamC, and BamD. ΔbepA cells carrying pEVOL-pBpF and a derivative of either pUC-bepA-his₁₀ (A and B) or pUC-bepA (C) with an amber codon and the E137Q mutation (A and C) or with only an amber mutation (B) were grown in L medium and UV-irradiated as described in the legend to Fig. 3. For A and B, membrane fractions were prepared by sonic disruption of cells followed by ultracentrifugation. Proteins from the membrane fractions (A and B) and from whole cells (C) were analyzed by SDS-PAGE and immunoblotting with antibodies against BepA (lower panels) or respective BAM components (upper panels). The cross-linked products of BepA with BamA, BamC, and BamD are indicated by BepA×BamA, BepA×BamC and BepA×BamD, respectively. Asterisks indicate cross-linked adducts with unidentified proteins. The results shown in A-C are representatives of two technical replicates.

D. Mapping of sites of cross-linking with BamA (green), BamC (red), and BamD (yellow) onto the structure of the BepA TPR domain (see text and Fig. 2). The same view as Fig. 2B is shown.

Figure 5. Cross-linking of BamA with BepA.

A. Cross-linking of BamA(pBPA) with BepA. Cells of a BamA depletion strain carrying pSup-BpaRS-6TRN and a plasmid encoding a His₆BamA derivative with an amber mutation at the indicated position were grown at 37°C in L medium supplemented with 0.2% glucose and 1 mM pBPA. His₆-tagged proteins were affinity-purified and analyzed by SDS-PAGE and immunoblotting with antibodies against BepA (lower panel) or BamA (upper panel). The cross-linked products between BamA and BepA are indicated.
by BamA×BepA. An asterisk indicates a cross-linked adduct with an unidentified protein.

The result is a representative of two independent experiments that were conducted using two independently isolated transformants (i.e. two biological replicates).

B. Location of E224 (orange sphere) in BamA of a BAM complex structure (PDB code: 5D0O). BamA is shown in green, BamB in cyan, BamC in red, BamD in yellow, and BamE in gray.

Figure 6. pBPA-mediated cross-linking between the BepA TPR domain and LptD.

A and B. Cross-linking of BepA(N323pBPA) and BepA(F404pBPA) with LptD. ΔbepA cells carrying pEVOL-pBpF and pUC-bepA-his\textsubscript{10} derivatives encoding BepA(N323amber)\textsubscript{His10}, BepA(N323amber/E137Q)\textsubscript{His10}, BepA(F404amber)\textsubscript{His10}, or BepA(F404amber/E137Q)\textsubscript{His10} were grown and UV-irradiated for 10 min as described in the legend to Fig. 3. After sonic disruption of cells, the His10-tagged proteins and their cross-linked adducts were affinity-purified and analyzed by SDS-PAGE and immunoblotting. Proteins from approximately four-fold more cells were loaded on the gel for the BepA(N323pBPA) and BepA(F404pBPA) samples compared to the BepA(N323pBPA/E137Q) and BepA(F404pBPA/E137Q) samples, because lower amounts of the His-tagged proteins were recovered for the WT samples, due to self-cleavage of the C-terminally attached His tag (see Fig. 8C and D). The bands indicated by asterisks were apparently reacted with both anti-BepA and anti-LptD antibodies and thus might contain degradation products of the BepA-LptD cross-linked adducts.

C. Growth phase-dependent cross-linking of BepA with LptD. ΔbepA cells carrying pEVOL-pBpF and pUC-bepA(N323amber/E137Q)-his\textsubscript{10} were grown in M9 medium
supplemented with 1 mM pBPA, 1 mM IPTG, and 0.2% arabinose at 30°C and a portion was withdrawn at the indicated time points (left). Following UV-irradiation for 10 min, total cellular proteins were analyzed by SDS-PAGE and immunoblotting (right). The results shown in A-C are representatives of three (for A and C) or two (for B) technical replicates.

D. Mapping of sites of cross-linking with LptD (purple) onto the structure of the BepA TPR domain (see text and Fig. 2). The same view as Fig. 2B left and Fig. 4D left is shown.

Figure 7. Effects of F404 mutations on the function and the protein-protein interaction.

A and B. Erythromycin sensitivity (upper panels) and accumulation of LptDC and BepA (middle and lower panels, respectively) in \(\Delta\text{bepA}\) cells expressing BepA mutants. Wild-type cells (chrom) or \(\Delta\text{bepA}\) cells carrying pUC18 (vector), pUC-bepA (WT), pUC-bepA(E137Q) (E137Q), or a derivative of pUC-bepA encoding a BepA mutant having Ala at the LptD-cross-linking site (N323), BamD-cross-linking site (D444), or BamA-cross-linking site (N397, F404, Q428, or R480) (A), or having an amino acid alteration to various residues at F404 (B) were used. The MICs of erythromycin for the above cells were determined at 30°C in the absence of IPTG. For immunoblotting analysis, cells were grown in L medium at 30°C and total cellular proteins were subjected to SDS-PAGE under non-reducing conditions and probed with anti-LptD or anti-BepA antibodies.

C. Effect of F404 mutations on the cross-linking of BepA with BamA, BamC, BamD, or LptD. \(\Delta\text{bepA}\) cells carrying pEVOL-pBpF and a plasmid encoding a BepA derivative having the Q428amber, L459amber, or D444amber mutation, or the E137Q/N323amber
mutations, with or without the F404G or F404Y mutation, were grown in L medium supplemented with 1 mM pBPA, 1 mM IPTG, and 0.2% arabinose, and UV-irradiated for 10 min. The membrane fractions were acid-precipitated and analyzed by SDS-PAGE and immunoblotting with anti-BepA antibody. Asterisks indicate cross-linked adducts with unidentified proteins. The entire blots for the data in C are shown in Fig. S6 to show loading controls. The MIC assay results shown in A and B are representatives of three biological replicates. The MIC data of these replicates are shown in Supporting Information Fig. S1B, which shows that, although there are some fluctuations, difference in the MIC values are essentially reproducible and thus significant. The immunoblotting results are representatives of two technical replicates.

Figure 8. Effects of the F404 mutations on the substrate degradation and self-cleavage.

A. degradation of overexpressed LptD by BepA F404 mutants. ΔbepA cells carrying pTWV-lptD-his_{10} and either pSTD689 (vector) or pSTD-bepA derivatives were grown at 30°C in L medium without IPTG. Total cellular proteins were analyzed by SDS-PAGE and immunoblotting with anti-LptD (upper panel), anti-penta-His (middle panel), and anti-BepA (lower panel) antibodies. In the upper panel, bands indicated by LptD contained both chromosomally and ectopically expressed LptD. Arrowheads indicate degradation products of LptD.

B. degradation of BamA by BepA F404 mutants in the ΔsurA strain. ΔsurA ΔbepA double mutant cells carrying pUC18 (vector) or a pUC-bepA derivative were grown at 30°C in M9 medium supplemented with 1 mM IPTG. Total cellular proteins were analyzed by SDS-PAGE and immunoblotting with anti-BamA (upper panel) and anti-BepA (lower panel) antibodies. The arrowhead indicates a BamA degradation
C. Intramolecular self-cleavage of BepA. Δ\textit{bepA} cells carrying pUC18 (vector), pUC-bepA (WT) or pUC-bepA(E137Q) (E137Q) were further transformed with pTH-bepA-his$_{10}$ (WT-His) or pTH-bepA(E137Q)-his$_{10}$ (E137Q-His). Cells were grown at 30°C in L medium without IPTG. Total cellular proteins were analyzed by SDS-PAGE and immunoblotting with anti-BepA antibody. “Cleaved” indicates self-cleaved BepA$_{\text{His10}}$.

D. Effects of the F404 mutations on BepA self-cleavage. Δ\textit{bepA} cells carrying a pTH-bepA derivative encoding the indicated F404 mutant form of BepA$_{\text{His10}}$ were grown at 30°C in L medium without IPTG. Total cellular proteins were analyzed by SDS-PAGE and immunoblotting with anti-BepA antibody. An asterisk indicates a non-specific band serving as a loading control. The results are representatives of two biological replicates.

Figure 9. A conceptual docking model between the BAM complex and BepA.

A-C. The crystal structure of the BepA TPR domain was manually associated with a crystal structure of the BAM complex (PDB code: 5D0O). Lateral (A) and periplasmic side (B and C) views are shown. BamA, B, C, D, E, and BepA are shown by ribbons in green, cyan, red, yellow, gray, and orange, respectively. The BepA residues cross-linked with the BAM components and a BamA residue cross-linked with BepA are indicated by spheres with the same color as the corresponding BAM components and BepA, respectively.

Figure 10. Two models for BepA function in the assembly of LptD.

A. First model. BepA interacts with LptD in the periplasmic space (i) and the complex is
then targeted to the BAM complex for assembly of LptD into the outer membrane (ii).

B. Second model. BepA is first associated with the BAM complex (i) and accepts LptD on the BAM complex to promote its assembly (ii). In either case, it would be possible that the first interaction facilitates the following interaction, that is, in the first model, productive interaction between BepA and LptD might promote the following interaction of BepA (or BepA-LptD) with the BAM complex, whereas in the second model, prior interaction of BepA with the BAM complex might facilitate the following interaction of BepA (or BepA-BAM) with LptD. Note that regardless of the step at which BepA functions, the interaction of BepA with the BAM complex and with LptD is not essential for LptD assembly, since LptD can assemble into the functional LptD/LptE complex even in the absence of BepA, although LptD assembly is significantly retarded when the BepA function is impaired. Thus, BepA is required for efficient assembly of LptD. BepA is also involved in degradation of OMPs including LptD when their normal assembly is compromised.
For Peer Review

COOH

NH₂

M₄₈ peptidase domain

TPR domain

position of truncation

vector 308 349 357 370 374 382 390 407 426 433 472 WT

anti-BepA

Figure 1
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TPR1</td>
<td>TPR2</td>
<td>TPR4</td>
</tr>
<tr>
<td>L1</td>
<td>ANRGALQAM EANKDIEAKR TIQPLAASP</td>
<td>GLUTLAM DELEGKEAN KAINHNEAR DLKRTN</td>
<td></td>
</tr>
<tr>
<td>L2</td>
<td>VTVQL MLLAVYLOG GQPOAANILN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L4</td>
<td>TGTVNEDR MQKLLQAG RESSHQAISSL SEASSVVLG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2
Figure 3
BepA residue cross-linked with BepA, BamA, BamC, and BamD.
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10