
A Simple Algorithm of Centralized Flow
Management for Data Centers

Andrei E. Tuchin∗, Masahiro Sasabe∗, and Shoji Kasahara∗
∗Graduate School of Information Science, Nara Institute of Science and Technology

8916-5 Takayama, Ikoma, Nara 630-0192, Japan
Email: andrei.tuchin.ak7@is.naist.jp, m-sasabe@ieee.org, kasahara@ieee.org

Abstract—In this paper, we consider a data-flow management
mechanism for data center networks, in which a centralized
controller called arbiter manages data flows. We propose a simple
algorithm for the arbiter to distribute flows over different time
points and paths, in a preemptive scheduling and traffic load-
balancing manner. The proposed algorithm is based on table-
driven resource reservation, in which states of all the links in a
data-center network are registered in a single table, and its in-
formation is updated whenever a new flow-request arrives at the
arbiter. We evaluate the performance of the proposed algorithm
through simulation experiments, investigating bit allocation rate
and flow allocation rate, under different flow-size distributions.
Numerical results show that the proposed algorithm can achieve
high bit allocation rate without collisions. It is also shown that
the proposed algorithm can allocate many flows within a small
time interval even when the variance of flow-size is large.

I. INTRODUCTION

Recently, cloud computing services are provided by data
centers with a huge number of server machines. One of the
performance issues in data centers is how to avoid network
congestion when a massive volume of intermediate processing
data are exchanged among servers. Recent studies reveal the
statistical characteristics in data-center networks. The authors
in [1] reported that 99% of data flows are smaller than 100
MB and that more than 90% of bytes are in flows between
100 MB and 1 GB. Also an important point is network buffer
queue fluctuation of data center networks and the Internet. [2]
reported that there are many impulses in the Internet queue
fluctuation and a network congestion can be recognized by
using binary quantization. For data centers, the queue length
variation tends to be uniform, because flow parameters among
flows in data center networks are similar. In this paper we
exploit this characteristic and the proposed algorithm shows
best performance for less flow attributes variations among
flows.

In general, a data file is divided into packets with the same
source-destination address, and these packets traverse through
network as a flow. Recent data-center networks consist of high-
speed full-duplex links such as 10 Gb/s, and the capacity of
such links is large enough for accommodating a large amount
of data packets.

Contribution: we consider a centralized system for packet
flow control in data centers. Data flows inside a data center are
fully controlled by the arbiter. We propose a simple algorithm
for the arbiter to distribute flows over different time points and

paths, in a preemptive scheduling and traffic load-balancing
manner. The algorithm aims to avoid collisions among flows
and prevent incast throughput collapse inside the data-center
network [3]. To achieve this goal, we consider a table-driven
resource reservation mechanism, in which states of all the links
in the network are registered in a table, and its information
is updated at new flow-request arriving points. With the
knowledge of network topology of the data center, the pro-
posed mechanism can efficiently avoid network collision and
achieve high bit allocation rate. We evaluate the performance
of the proposed algorithm through simulation experiments,
investigating bit allocation rate and flow allocation rate, under
different flow-size distributions.

The rest of this paper is organized as follows. Section II rep-
resents the previous studies related to data-center networking.
Section III describes the data-center model considered in the
paper, and the proposed algorithm is presented in Section IV.
We show some numerical examples in Section V, and finally,
we conclude the paper in Section VI.

II. RELATED WORK

In recent years, many ideas were proposed to solve the chal-
lenge of incast throughput collapse. According to the classifi-
cation proposed in a comparative article [4], our solutions can
be classified in conformity with next parameters: traffic load-
balancing, a centralized system, requires host modifications
and a preemptive scheduling.

In [5], the authors propose a centralized and non TCP-based
data flow control mechanism called Fastpass. As reported
in [4], there are not exist effective systems, algorithms or
frameworks that join load-balancing and preemptive schedul-
ing ideas. Fastpass join these two ideas and showed good
numerical results. In Fastpass, an arbiter arranges packet
transfer requests in a reservation basis. When a source node
sends a packet to a destination node, Fastpass determines a
timeslot and the path used for that transmission. The authors
in [5] developed an experimental system in the Facebook’s
data center, investigating the performance of Fastpass. Fastpass
does not require switch modifications, sender/receiver Network
interface controller (NIC), but requires to modify host OSs. In
addition, the arbiter of Fastpass suffers from large overhead in
packet-based control. In terms of the architecture, in this paper
we extends the main idea of Fastpass, total centralized control-
ling control of states of data center network, but our system



distinguish the load-balancing and the time slot reservation
modules which gives ample opportunities for a development
of new features and extensions.

Hedera [6] is a non TCP-based centralized data flow dis-
tribution system based on OpenFlow [7], in which a core
scheduler can access forwarding tables of all core switches
such that data flows are dynamically distributed over data-
center network. Hedera can efficiently distribute data flows
over the network and requires only switch modifications. How-
ever, the system is oriented towards long flows and considers
one as the major cause of network congestion. The latency of
transmissions is not taken into consideration.

pFabric [8] is a priority-based packet-dropping system to
reduce latency of packet transmissions. Each packet has prior-
ity assigned by source servers. If the buffer of a switch is full
and an incoming packet has lower priority than all buffered
packets, it is dropped. The proposed solution requires servers
and switches modifications.

Deadline-Driven Delivery (D3) [9] is a distribution system
for meeting flow deadlines. The system requires servers and
switches modifications. The source server sends the needed
transmission rate for a flow to the corresponding destination
server. Switches between source-destination servers receive
these rate requests and assign required transmission rates.
The throughput rate distributions among flows bases on a
greedy strategy. This system, however, does not consider load-
balancing and incast problem.

Preemptive Distributed Quick (PDQ) protocol [10] tries to
quickly complete flow transfer for meeting flow deadlines.
PDQ extends the main idea of D3, however uses more
information and logical steps. PDQ uses a priority mechanism
based on scheduling disciplines of earliest deadline first and
shortest job first. This is a decentralized system which can
solve collisions among flows by using states for flows and
order of flows for transmission via bottleneck switches. It is
reported that PDQ can save 30% average flow completion time
compared with the existing transport protocol such as TCP and
RCP. However, the protocol is quite challenging to implement
in practice and inherits from D3 problems.

DC-Vegas [2] is an algorithm to control congestion in
data centers. The algorithm belongs to the family of TCP
congestion-avoidance in the Internet, but DC-Vegas solves the
problem of recognizing network congestion in data centers and
updating a congestion control window. The updating process
bases on Round Trip Time (RTT) and the minimum observed
RTT. Other steps are unchanged from the standard algorithm.
Numerical results show that a developed delay-based TCP
algorithm effectively controls the congestion in data center
networks. DC-Vegas requires sender modifications and does
not consider load-balancing.

III. SYSTEM MODEL

A. Network Topology

We consider a network topology as shown in Fig. 1. The
network configuration of these figures is set according to [11].

Fig. 1: Intra- and inter-rack flows.

The network considered in the paper consists of the arbiter
node, core switches (CSWs), rack switches (RSWs), and server
nodes. We assume that CSWs are connected in a ring manner,
and that each CSW is connected to all the RSWs, each of
which accommodates server nodes.

Let L and M denote the number of CSWs and that of RSWs
in the data-center network, respectively. Each CSW has M
different links to RSWs. Let Ci (i = 1, 2, . . . , L) and Rj

(j = 1, 2, . . . ,M ) denote the CSW with index i and the RSW
with index j, respectively.

B. Inter- and Intra-Flows

Flows have the following attributes: size, source server,
source rack, destination server, destination rack, time when
a flow is generated, time when a flow have to be sent from
source server to destination server, and path.

We classify flows into two categories: intra-rack flows and
inter-rack ones. An intra-rack flow is a flow whose source and
destination servers are in the same rack. An inter-rack flow
is a flow whose source and destination servers are located in
different racks. In this case, the flow traverses from the source
RSW to the destination RSW, via one of CSWs. Inter-rack
flows use the resources of CSW. Fig. 1 shows intra- and inter-
rack flows.

C. System Architecture

Fig. 2 illustrates main components of the proposed system.
The arbiter consists of three components: a server module,
a timeslot allocation module and a path selection module.
The server module implements functionality for processing
requests from servers and interacts with other arbiter’s mod-
ules. The timeslot allocation module assigns a timeslot for
a flow transmission request depend on information in table-
driven mechanism for resource reservation, IV-B. The path
selection module independently from the timeslot allocation
module constraints a structure of table-driven mechanism,
IV-A. In general, a load-balancing and preemptive scheduling
operates independently, however a final response to a server
is constrained based on information from these two modules.

A client side consists of an additional client module to
send requests to the arbiter and manipulates a NIC. The client
module can be realized by modifying OS kernel without any
hardware modifications.



Fig. 2: System architecture.

IV. THE PROPOSED ALGORITHM

In this section, we present the core algorithm of the arbiter.
The arbiter is located at the highest hierarchy of the network
topology, where all the CSWs belong to, and hence the arbiter
is connected to all the CSWs. The arbiter is the centralized
controller for scheduling data flows in the data center network.
When a server node s has data to transfer to destination server
node d, the server node s sends a flow request to the arbiter
before transferring data packets to node d. When the arbiter
receives the request from node s, the arbiter schedules the flow
from s to d by reserving all the links along the route from s
to d.

A. Server Grouping and CSW Mapping

In this paper, the link capacity is regarded as a resource
for data flows. The basic idea of the proposed scheme is
that the whole capacity of a link is reserved for one flow in
the minimum time interval during which all the data packets
composing the flow are transmitted. For example, when a
request of a flow with 10 Gbits arrives at the arbiter, the arbiter
reserves the 10 Gb/s output link of a CSW for one second.

We define n(i) as the number of servers accommodated in
RSW Ri (i = 1, 2, . . . ,M ). The servers accommodated in
Ri are classified into L groups. Let G

(i)
k (k = 1, 2, . . . , L,

i = 1, 2, . . . ,M ) denote the set of server indices in Ri, each
of which indicates the destination server of inter-rack flow
coming from the other rack via CSW Ck. Note that

L∑
k=1

|G(i)
k | = n(i),

where |G(i)
k | is the cardinal number of set G(i)

k . We define G
as the index set of all the servers in the data center, given by
G = ∪M

i=1 ∪L
k=1 G

(i)
k .

Note that the server classification plays an important role
for achieving load balancing of the proposed algorithm. In this
paper, we assume that G

(i)
k ’s are determined a priori for all

k and i according to data traffic profiles so that the resulting
traffic pattern is well distributed.

B. Core Algorithm

The basic idea is that when the arbiter receives a new flow
request, the arbiter reserves the output link(s) of the RSW and
CSW along the flow path. More precisely, if the request is
for an intra-rack flow, its source and destination servers are
located in the same rack, and the arbiter reserves the output
link of the rack, which is connected to the destination server.
If the request is for an inter-rack flow, on the other hand, it’s
source and destination servers are placed in different racks,
and hence the arbiter reserves the output link from CSW to
RSW and that from the RSW to the destination server, along
the flow path.

The main issue of the arbiter algorithm is how the informa-
tion of each flow reservation is managed. To tackle this issue,
we introduce two fundamental elements: the link-utilization
table and the freshening time. The link-utilization table records
which links are used for the packet flows, while the freshening
time is the time at which the link-utilization table is cleared,
indicating that no link is used for flow transmission.

The outline of the proposed algorithm is as follows. For
simplicity, we assume the capacity of all the links in the data
center is the same and equal to C. Consider the case in which
a source node s ∈ G

(i)
k tries to send a flow of B bits to a

destination d ∈ G
(j)
l . If i = j, destination d is accommodated

in the same rack of Ri, and hence the packet flow from s to
d is an intra-rack flow with route

s → Ri → d.

If i ̸= j, on the other hand, destination d is located in the
different rack of Rj and the packet flow from s to d is an
inter-rack flow with route

s → Ri → Cl → Rj → d.

We define l(n1, n2) as the link from node n1 to node n2.
In the above example of inter-rack flow, the flow path from
s to d consists of l(s,Ri), l(Ri, Cl), l(Cl, Rj), and l(Rj , d)
links.

Let S denote the set of CSWs, RSWs, and server nodes in
the data center network, given by

S = {C1, . . . , CL} ∪ {R1, . . . , RM} ∪ SS,

where SS denote the set of server nodes in the data center. We
further define S(l) as the set of links in the data center, given
by

S(l) = {l(n1, n2) : n1, n2 ∈ S}.

Now we define the link-utilization table LUtable(n1, n2)
for link l(n1, n2) ∈ S(l) as follows.

LUtable(n1, n2) =

{
1, if link l(n1, n2) is used,
0, otherwise.

We will show the instance of LUtable in Section IV-D.
We define Tf as the freshening time at which all flow

transfers completed or will complete. When the current time
is before Tf , the system has ongoing flow(s) in the network.
When Tf is past, on the other hand, all the flow transfers



complete, and hence all the elements of LUtable can be
cleared to zero. We define Tf prev as the previous freshening
time which was used before Tf . Tf prev and Tf are borders of
a time window for transmission of a flow sequence without
colliding with each other.

Now suppose that at time t, the arbiter receives a new
request of a flow from s ∈ G

(i)
k to d ∈ G

(j)
l , whose size

is B. Let Sl(s, d) denote the set of links along the path from
s to d. Sl(s, d) is given by

Sl(s, d) =

{
{l(s,Ri), l(Ri, d)}, if i = j,
{l(s,Ri), l(Ri, Cl), l(Cl, Rj), l(Rj , d)}, if i ̸= j.

With Tf and Tf prev, the proposed algorithm updates LUtable
according to the following way.

Case 1: t > Tf .
In this case, all links of the data center are not used at
time t. The arbiter sets 0’s to all the cells of LUtable,
and then sets

LUtable(n1, n2) = 1, ∀l(n1, n2) ∈ Sl(s, d).

Tf and Tf prev are updated by

Tf := t+B/C, Tf prev := t.

Note that B/C is the transmission time of the flow
with size B.

Case 2: t ≤ Tf .
In this case, some links of the data center are used
at time t. If links that are needed for the flow are not
used (LUtable(n1, n2) = 0, ∀l(n1, n2) ∈ Sl(s, d)),
the arbiter sets 1’s to cells of LUtable as follows:

LUtable(n1, n2) = 1, ∀l(n1, n2) ∈ Sl(s, d).

The freshening time Tf is updated by

Tf :=

{
Tf , if Tf ≥ Tf prev +B/C,

Tf prev +B/C, if Tf < Tf prev +B/C.

If some link(s) needed for the flow are used
(LUtable(i, j) = 1 for some l(n1, n2) ∈ Sl(s, d)),
the arbiter sets 0’s to all the cells of LUtable, and
then sets

LUtable(n1, n2) = 1, ∀l(n1, n2) ∈ S(s, d).

Tf prev and Tf are updated by

Tf prev := Tf , Tf := Tf +B/C.

C. Buffering for Colliding Requests
In the algorithm, freshening time Tf is updated whenever

used links are detected. Consider the case where a link is
required for many flow requests at the same time. In this case,
Tf is updated repeatedly, while most of links are idle and
not used for file transfer, resulting in low link utilization. In
order to avoid this case, the arbiter is equipped with the buffer
of file requests to which the arbiter fails in allocating time
intervals. Note that increasing the buffer size also requires
much computation, which may result in deteriorating the rate
of flow allocation. We will discuss how this buffering affects
the performance of the proposed algorithm in Section V.

Fig. 3: Example of scheduling.

D. Example of Scheduling

Fig. 3 shows an example of main logical steps for updating
LUtable, Tf , Tf prev. In this example, we assume the link
capacity is 10Gb/s, and that Tf = 0, Tf prev ≤ 0. Suppose
that the real time is just before 0, and that four flow requests
arrive at the arbiter within a very short term. The attributes of
the flows are shown in Fig. 3.

Table I shows how LUtable is updated at each flow request.
In this table, ”-” implies null.

In Table I, S(i)
k is a server node k accommodated in RSW

Ri. We assume the following path scenario.

Flow 1: S
(2)
2 → R2 → C1 → R1 → S

(1)
1

Flow 2: S
(1)
1 → R1 → S

(1)
2

Flow 3: S
(1)
13 → R1 → C2 → R2 → S

(2)
1

Flow 4: S
(2)
13 → R2 → C1 → R1 → S

(1)
2

Because the first link from a source to a RSW is exclusively
available for the source node, we do not need to reserve the
first link.

Flow 1 is the flow with 37 MB size, its source server is
S
(2)
2 accommodated in RSW R2, and the destination is S

(1)
1

in RSW R1. Note that Flow 1 is an inter-rack flow. Since the
transfer time of Flow 1 is (37×106×8)/(10×109) = 0.0296
s, the arbiter reserves links between its source and destination
for the time interval from 0 s to 0.0296 s.

Then, the arbiter reserves links for Flow 2. Flow 2 is an
intra-rack flow of R1, and the destination S

(1)
2 of Flow 2 is

different from the destination of Flow 1, and hence the arbiter
can allocate to Flow 2 the time interval starting at 0 for the
link between R1 and S

(1)
2 . Flow 3 is also a good case in the

sense that no collision occurs, and hence the arbiter allocates
to Flow 3 the time interval starting 0 for the links along the
Flow 3 path.

Flow 4 is an inter-rack flow, and its destination is the same
as Flow 2. To avoid collision at the link from R1 to S

(1)
2 ,

the arbiter updates Tf prev to the current value of Tf . With
the update, the arbiter allocates time intervals starting from
Tf prev.

V. SIMULATION RESULTS

A. Experimental Setting

In order to evaluate the performance of the proposed algo-
rithm, we conducted simulation experiments. In this simula-
tion, we consider the network topology where the number of



TABLE I: Example of LUtable updating.

State
n1

n2 C1 R1 R2 S
(1)
1 S

(1)
2 S

(2)
1

C1 - 0 0 - - -
0 R1 0 - - 0 0 -

R2 0 - - - - 0
C1 - 1 0 - - -

1 R1 0 - - 1 0 -
R2 1 - - - - 0
C1 - 1 0 - - -

2 R1 0 - - 1 1 -
R2 1 - - - - 0
C1 - 1 1 - - -

3 R1 1 - - 1 1 -
R2 1 - - - - 1
C1 - 1 0 - - -

4 R1 0 - - 0 1 -
R2 1 - - - - 0

CSWs is 4 and the number of RSWs is M = 32. The number
of server nodes accommodated in a RSW is identical for all the
RSWs and equal to 48. Therefore, the total number of servers
in the system is 1536. In each rack, 48 servers are classified
into 4 server groups, i.e., L = 4 and G

(i)
k = 12 for all k and

i. One CPU core manages one group, i.e., 32 × 12 = 384
servers. All the links in the network are full-duplex. The link
capacity for a pair of a CSW and a RSW and that for a pair
of a RSW and a server node are 10 Gb/s. The capacity of
links with which CSWs are connected in a ring fashion is 80
Gb/s. We set buffer size Q to be 100 and 700. Note that the
buffer size is the maximum number of flow requests that can
be buffered in the arbiter.

In this paper, we mainly focus on the stress test of proposed
algorithm, that is, how many flow requests the arbiter can
process per second. For this purpose, we generate flow requests
as many as possible so that the arbiter always has flow requests
to be served. For each flow request, the pair of source server
and destination server is randomly chosen from all the servers.
The base size of a flow is 12 Kbits (1500 bytes), and the
additional data size is generated according to a probability
distribution. We consider three distributions for the additional
data size: exponential, Weibull, and Pareto distributions. We
prepared 50 patterns of flow requests for each case.

The simulation results are compared with Fastpass, Hedera,
and an optimal case. In the optimal case, only intra-flow
requests are generated such that all the 384 servers in one
group can simultaneously transfer data to their destination
nodes at the maximum link speed of 10 Gb/s during the entire
simulation. Thus, the optimal case can fully utilize the data
center network.

As for the performance measure, we consider ideal bit allo-
cation rate, actual bit allocation rate, and actual flow allocation
rate. The ideal (resp. actual) bit allocation rate is calculated
by dividing the overall transferred data by simulation (resp.
execution) time. Note that the simulation time is constant
and defined by the scenario, but the execution time varies
depending on multiple factors, e.g., buffer size Q of proposed
algorithm and processing power of arbiter. Thus, the ideal
bit allocation rate becomes the upper bound of actual bit

Fig. 4: Normalized ideal bit allocation rate vs. mean additional
data size.

allocation rate. We can also calculate the upper bound of ideal
bit allocation rate, which is equal to that for the optimal case,
as follows. In the optimal case, all the 384 servers in one group
can simultaneously transfer data to its destination node at
10 Gb/s, thus 3.84 Tb/s is achieved. The actual flow allocation
rate is calculated by dividing the number of allocated flows
by execution time.

The simulation program was implemented with C language,
and was performed on 2.5 GHz CPU with 4 GB RAM, running
on Ubuntu 14.04. We show the mean and standard deviation
for each performance measure.

B. Ideal Bit Allocation Rate

Fig. 4 illustrates the relationship between mean additional
data size and ideal bit allocation rate for Q = 100 and 700.
Note that the ideal bit allocation rate is normalized by its
upper bound, i.e., 3.84 Tb/s. In each buffer-size case, we show
the results for three distributions of additional data size, i.e.,
exponential, Weibull, and Pareto.

We first observe that the ideal bit allocation rate takes the
maximum value at additional data size of zero for all the cases.
This is because each flow size is constant and hence it is easy
for the arbiter to allocate time intervals to fixed-size flows.
When the mean additional data size becomes greater than zero,
the ideal bit allocation rate steeply decreases but gradually
increases with the additional data size for exponential and
Weibull distribution cases. On the contrary, we observe a cyclic
tendency in the Pareto distribution case.

Next, we focus on the impact of buffer size Q. Since large
buffer can avoid frequent updating of Tf , the results for Q =
700 can outperform those of Q = 100. Recall that the ideal
bit allocation rate is not affected by the computation overhead,
which depends on Q. We evaluate the impact of computation
overhead in Section V-C.

C. Actual Bit Allocation Rate

In Section V-B, we revealed the ideal characteristics of pro-
posed algorithm, where the computation overhead is ignored.
In actual system, however, conducting the proposed algorithm
requires a certain time, which depends on multiple factors,
e.g., buffer size Q and processing power of the arbiter.



Fig. 5: Actual bit allocation rate vs. mean additional data size.

Fig. 5 illustrates the relationship between mean additional
data size and actual bit allocation rate for Q = 100 and 700. In
each buffer-size case, we show the results for three additional
data size distributions.

We observe that the results are similar to those in Fig. 4,
for each distribution case.

However, we also find two different characteristics between
Fig. 4 and Fig. 5. First, the actual bit allocation rate for
Q = 100 becomes greater than that for Q = 700, regardless
of the additional data size distribution. This is because the
actual bit allocation rate is affected by the execution time,
which increases with buffer size Q. Second, when the mean
additional data size is zero, the actual bit allocation rate is
small but the ideal bit allocation rate is large. This is also
because of much computation time, due to a large number of
arriving flow requests. In our stress testing environments, the
number of arrival flows increases when the mean additional
data size is fixed and small.

Finally, we compare the results of proposed algorithm with
those of Fastpass. The scenario with 120 Kbits of additional
data size is almost equivalent to the experiment condition of
Fastpass [5]. It is reported in [5] that Fastpass achieves the bit
allocation rate of 0.4 Tb/s, which is obtained at experiments
with 4 CPU cores. On the contrary, the proposed algorithm
achieves 0.8 Tb/s by a moderate PC with one CPU core, even
for Q = 700.

D. Actual Flow Allocation Rate

Fig. 6 illustrates the relationship between mean additional
data size and actual flow allocation rate for Q = 100 and
700. In this figure, the actual flow allocation rate for three
distribution cases are almost the same and remain constant
in each buffer-size case. This result suggests that the actual
flow allocation rate is insensitive to the additional data-size
distribution. We also observe that the actual flow allocation
rate for Q = 100 is greater than that for Q = 700, as in
Fig. 5.

It is reported in [6] that Hedera can manage about 706
flows per 1 ms for a data-center network with 1024 hosts. In
our experiment, the number of server nodes is 1536, however,
Fig. 6 shows that the proposed algorithm can allocate more
than 18,600 flows per 1 ms, even for Q = 700.

Fig. 6: Actual flow allocation rate vs. mean additional data
size.

VI. CONCLUSION

The proposed algorithm is based on the table-driven re-
source reservation mechanism, in which states of all the links
in the network are registered in a table, and its information is
updated at new flow-request arriving points. Numerical results
showed that the proposed algorithm can effectively allocate a
large number of flows to link resources and achieves better
performance than the existing algorithms.

ACKNOWLEDGEMENT

This research was partly supported by SCAT Foundation,
and Japan Society for the Promotion of Science under Grant-
in-Aid for Scientific Research (B) No. 15H04008.

REFERENCES

[1] A. Greenberg, J.R. Hamilton and N. Jain, “VL2: A Scalable and Flexible
Data Center Network,” ACM SIGCOMM, Barcelona, Spain, Aug. 2009,
pp. 51–62.

[2] J. Wang, J. Wen and C. Li, “DC-Vegas: A Delay-Based TCP Congestion
Control Algorithm for Datacenter Applications,” Journal of Network and
Computer Applications, vol. 53, pp. 103–114, Jul. 2015.

[3] Y. Chen, R. Griffith, J. Liu, R. H. Katz and A. D. Joseph, “Understand-
ing TCP Incast Throughput Collapse in Datacenter Networks,” ACM
SIGCOMM, Barcelona, Spain, Aug. 2009, pp. 73–82.

[4] R. Rojas-Cessa, Y. Kaymak and Z. Dong, “Schemes for Fast Transmis-
sion of Flows in Data Center Networks,” IEEE Communications Surveys
and Tutorials, vol. 17, no. 3, pp. 1391–1422, Aug. 2015.

[5] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah and H. Fugal,
“Fastpass: A Centralized “Zero-Queue” Datacenter Network,” ACM
SIGCOMM, Chicago, USA, Aug. 2014, pp. 307–318.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang and A. Vahdat,
“Hedera: Dynamic Flow Scheduling for Data Center Networks,” Pro-
ceedings of the 7th USENIX conference on Networked systems design
and implementation, San Jose, USA, Apr. 2010, p. 19.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Turner, “OpenFlow: Enabling Innovation in
Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, 2008.

[8] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar
and S. Shenker, “pFabric: Minimal Near-Optimal Datacenter Transport,”
ACM SIGCOMM, Hong Kong, China, Aug. 2013, pp. 435–446.

[9] C. Wilson, H. Ballani and T. Karagiannis, “Better Never Than Late:
Meeting Deadlines in Datacenter Networks,” ACM SIGCOMM, Toronto,
Canada, Aug. 2011, pp. 50-61.

[10] C. Hong, M. Caesar and P. Godfrey, “Finishing Flows Quickly with
Preemptive Scheduling,” SIGCOMM Comput. Commun. Rev., vol. 42,
no. 4, pp. 127–138, Aug. 2012.

[11] N. Farrington and A. Andreyev, “Facebook’s Data Center Network
Architecture”, IEEE Optical Interconnects Conf., Loews Coronado Bay,
USA, pp. 49–50, May. 2013.


